2024 Ph H1 Q20

Section: Electricity

Topic: Sources, Internal Resistance

Question Summary

A battery is tested using a variable resistor. Measurements of terminal voltage V and current I are plotted to give a straight-line V–I graph. A student states: (I) EMF is 12 V, (II) internal resistance is 10 Ω , (III) short-circuit current is 1.2 A. Which statements are correct?

Worked Solution

For a source with internal resistance: V = E - Ir (straight line with intercept E and slope -r).

- Internal resistance: Using points (I = 0.20 A, V = 2 V) and (I = 1.20 A, V = 12 V): $\Delta V/\Delta I = (12-2) / (1.20-0.20) = 10 \text{ V A}^{-1} \Rightarrow r = 10 \Omega$. \Box II correct.
- EMF: From the V-axis intercept (I = 0), E \approx 14 V (from the graph), not 12 V \Rightarrow I false. \Box
- Short-circuit current: $V = 0 \Rightarrow I_sc = E/r \approx 14/10 = 1.4$ A, not 1.2 A \Rightarrow III false. \Box

Final Answer: B

Revision Tips

- On V-I graphs: y-intercept gives EMF; the magnitude of the slope gives internal resistance.
- I-intercept (where V = 0) gives the short-circuit current I_sc = E/r.
- Use two well-spaced points on the straight line to compute gradient reliably.