2024 Ph H1 Q17

Section: Particles and Waves

Topic: Refraction of Light

Question Summary

A ray of monochromatic light passes from air into diamond. The frequency of the light in air is 5.09×10^{14} Hz. Find the speed of this light in diamond.

Worked Solution

Step 1: Frequency does not change across a boundary.

Step 2: Wavelength in diamond: $\lambda = v / f$, but we need v.

Step 3: Refractive index of diamond (n \approx 2.42). v = c / n.

 $v = (3.00 \times 10^8) / 2.42 \approx 1.24 \times 10^8 \text{ m s}^{-1}$.

This corresponds to option C.

Final Answer

 $C - 1.24 \times 10^8 \text{ m s}^{-1}$

Revision Tips

- Frequency is invariant across a boundary.
- Use v = c/n once refractive index is known.
- Diamond has a very high n (\approx 2.4), so speed of light is much lower than in air.