2024 Ph H2 Q1

Section: Our Dynamic Universe

Topic: Projectiles and Doppler Effect

Question Summary

 $2.10 \, \text{m}$) at $t = 0.95 \, \text{s}$.

height of 1.60 m.
(a)(i) Calculate horizontal and vertical velocity components.

A Doppler ball is thrown at 11.0 m s⁻¹ at an angle of 36.0° from a

- (a)(ii) Find the horizontal distance to point Q after 1.53 s.
- (a)(iii) Determine the height **h** above student B (with max reach
- (b)(i) When the Doppler ball moves at 8.60 m s⁻¹ along ropes,
 calculate the frequency heard by student B.
- (b)(ii) Explain how the foam protects the circuit board.

✓ Answer:

(a)(i) Horizontal and vertical velocity components

Working: $u_b = u \cos \theta = 11.0 \cos 36.0^{\circ} = 8.9 \,\mathrm{ms}^{-1},$

• $u_h = 8.9 \, \mathrm{ms}^{-1}$

• $u_v = 6.5 \, \mathrm{ms}^{-1}$

 $u_v = u \sin \theta = 11.0 \sin 36.0^\circ = 6.5 \,\mathrm{ms}^{-1}.$

Answer: $s = 13.6 \,\mathrm{m}$

 $s = u_h t = 8.9 \times 1.53 = 13.6 \,\mathrm{m}.$

(a)(ii) Horizontal distance

Working:

Answer: $h = 1.2 \,\mathrm{m}$

(a) (iii) Height above student B

$s = u_v t + \frac{1}{2}at^2 = 6.5(0.95) + 0.5(-9.8)(0.95^2) = 6.18 - 4.98 = 1.20\,\mathrm{m}$

Working:

Since student B's reach is 2.10 m, the ball is 1.2 m above this leve

Vertical displacement at t = 0.95 s:

$f_o=638\,\mathrm{Hz}$

(b)(i) Doppler frequency

Answer:

 $f_o = f_s \frac{v}{v - v_s},$

where $v=340\,{\rm ms^{-1}}$, $v_s=8.60\,{\rm ms^{-1}}$, $f_s=622\,{\rm Hz}$.

$$f_o = 622 \frac{340}{340 - 8.6} = 622 \times 1.025 = 638 \,\mathrm{Hz}.$$

The foam increases the time of contact during the collision,

(b)(ii) Explanation

which **reduces the average force** on the circuit board, protecting it from damage (since $F = \frac{\Delta p}{\Delta t}$).

Quick Tips

- Break projectile motion into horizontal and vertical components.
- Use Doppler shift: $f_o = f_s rac{v}{v \pm v_s}$.
- Soft materials reduce force by increasing collision time.