2024-Ph-H1-Q5

Section: Our Dynamic Universe

Topic: Energy and Power

Summary:

In a hydroelectric power station, water flows at $\dot{m}=4.5\times 10^6\,{\rm kg/min} \ {\rm from\ a\ reservoir\ 150\,m\ above\ turbines}.$ The power delivered by the falling water is required.

Solution:

1. Convert mass flow rate to seconds:

$$\dot{m} = \frac{4.5 \times 10^6}{60} = 7.5 \times 10^4 \,\mathrm{kg/s}.$$

2. Power is:

$$P = \dot{m}gh = 7.5 \times 10^4 \times 9.8 \times 150.$$

3. Calculate:

$$P = 7.5 \times 10^4 \times 1470 = 1.1025 \times 10^8 \,\mathrm{W} \approx 1.1 \times 10^8 \,\mathrm{W}.$$

Answer: C. $1.1 \times 10^8 \,\mathrm{W}$

Guidance for Students:

- · Always convert minutes to seconds for power calculations.
- Use $P=\dot{m}gh$ when mass flow and height are known.

Revision Tips:

- Check units: $kg/s \times m/s^2 \times m = W$.
- Be careful with large numbers and scientific notation.