2023 Ph H2 Q13

Section: Electricity

Topic: Capacitors

Summary of Question:

A student charges a capacitor and measures potential difference and charge. (a)(i) Calculate capacitance. (a)(ii) Determine absolute uncertainty. (b) Use time constant to estimate charging time with given resistor and supply voltage.

(a)(i) Capacitance

$$Q = CV \Rightarrow C = Q/V$$

$$Q = 136.8 \text{ mC} = 136.8 \times 10^{-3} \text{ C} = 0.1368 \text{ C}$$

$$V = 5.7 V$$

$$C = 0.1368 / 5.7 = 0.0240 F (24.0 mF)$$

(a)(ii) Absolute uncertainty

Uncertainty in Q = ± 0.1 mC = ± 0.0001 C

Uncertainty in $V = \pm 0.1 V$

Fractional uncertainty in Q = 0.0001 / 0.1368 \approx 7.3 \times 10⁻⁴ (\approx 0.073%)

Fractional uncertainty in $V = 0.1 / 5.7 \approx 0.0175$ (1.75%)

Total fractional uncertainty $\approx 0.073\% + 1.75\% \approx 1.82\%$

Absolute uncertainty = $0.0240 \times 0.0182 \approx 0.00044 \text{ F}$ (0.44 mF)

(b) Charging time

Time constant $\tau = RC$

$$R = 15 \text{ k}\Omega = 1.5 \times 10^4 \Omega$$

$$C = 0.0240 F$$

$$\tau = 1.5 \times 10^4 \times 0.0240 = 360 \text{ s}$$

Full charge time $\approx 5\tau = 5 \times 360 = 1800 \text{ s} (30.0 \text{ min})$

Final Answers

(a)(i)
$$C = 0.0240 F (24.0 mF)$$

- (a)(ii) Absolute uncertainty = 0.00044 F (0.44 mF)
- (b) Time to charge \approx 1800 s (30.0 minutes)

Revision Tips

- Capacitance C = Q/V; ensure consistent SI units (C, V, F).
- Combine fractional uncertainties when dividing/multiplying.
- A capacitor is effectively fully charged after about 5τ.