2023 Ph H1 Q15

Section: Particles and Waves

Topic: Interference

Question Summary

Monochromatic light of wavelength 605 nm passes through a diffraction grating with slit spacing 5.0×10^{-6} m. Maxima are observed up to 29° from the centre. What is the total number of maxima on the screen?

Worked Solution

Diffraction grating condition: $d \sin\theta = m\lambda$.

Given $d = 5.0 \times 10^{-6} \text{ m}$, $\lambda = 605 \text{ nm} = 6.05 \times 10^{-7} \text{ m}$.

Maximum order m_max = $d \sin\theta / \lambda$.

 $m_max = (5.0 \times 10^{-6} \times \sin 29^{\circ}) / (6.05 \times 10^{-7}).$

 $\sin 29^{\circ} \approx 0.485$.

 $m_max \approx (2.425 \times 10^{-6}) / (6.05 \times 10^{-7}) \approx 4.01.$

So maximum observable order = 4 (integer).

Maxima occur for $m = 0, \pm 1, \pm 2, \pm 3, \pm 4 \rightarrow total = 9$.

Final Answer

D — 9 maxima

Revision Tips

- Use d $sin\theta = m\lambda$ to find maximum possible m.
- Round m_max down to nearest integer.
- Remember to count both positive and negative orders, plus central maximum.

• Total = $2m_max + 1$.