2023 Ph H1 Q12

Section: Particles and Waves

Topic: Nuclear Reactions

Question Summary

Fusion: ${}^{3}_{1}H + {}^{2}_{1}H \rightarrow {}^{4}_{2}He + {}^{1}_{0}n$. Mass before = 8.347×10^{-27} kg; after = 8.317×10^{-27} kg.

Worked Solution

$$\Delta m = 3.0 \times 10^{-29} \text{ kg}.$$

$$E = \Delta m c^2 \approx 2.7 \times 10^{-12} J.$$

Final Answer

$$D - 2.7 \times 10^{-12} J$$

Revision Tips

- $\Delta m = mass(before) mass(after)$.
- Use E = Δ m c² with c $\approx 3.0 \times 10^8$ m/s.
- Fusion releases energy as binding energy per nucleon increases.