2023 Ph H2 Q1

Section: Our Dynamic Universe

Topic: Motion, Equations and Graphs

Question Summary

A van travels at 13.4 m s⁻¹ and brakes with a constant acceleration of -2.85 m s⁻² until it comes to rest at traffic lights.

We must find:

- (a) The distance travelled during braking.
- (b) The time taken to stop.
- (c) The velocity–time graph, with values on both axes.

(a) Distance during braking

Answer: $s = 31.5 \,\mathrm{m}$

Working: Use:

 $v^2 = u^2 + 2as$

where v=0, $u=13.4\,\mathrm{ms^{-1}}$, $a=-2.85\,\mathrm{ms^{-2}}$.

$$0 = (13.4)^2 + 2(-2.85)s$$

$$s = \frac{(13.4)^2}{2 \times 2.85} = \frac{179.6}{5.70} \approx 31.5 \,\mathrm{m}.$$

(b) Time to stop

Answer:

 $t = 4.7 \,\mathrm{s}$

Working: v = u + at

0 = 13.4 + (-2.85)t

$$t = \frac{13.4}{2.85} \approx 4.7 \,\mathrm{s}.$$

(c) Velocity-time graph

Answer:

- A straight line sloping downwards from (t=0,v=13.4) to $(t=4.7,v=0) {\tt .}$
- · Axes:
 - Vertical axis (v): 0 to 13.4 m s⁻¹.
 - Horizontal axis (t): 0 to 4.7 s.

Quick Tips

- For uniform deceleration, the v-t graph is a straight line down to zero.
- Use $v^2=u^2+2as$ when time isn't given.
- Time can be found from v = u + at.