2022 Ph H2 Q11

Section: Particles and Waves

Topic: Refraction of Light

A triangular glass prism (n=1.47) in a plastic tank. (a) Calculate angle θ of refraction at exit. (b) Find critical angle. (c) Tank filled with vegetable oil (n=1.47): state exit point.

Worked solution

(a) Angle θ

Snell's law: n_glass sin37° = n_air sin θ 1.47×sin37° = sin θ = 0.885 θ = 62.2°

Answer: $\theta \approx 35.5^{\circ}$

(b) Critical angle

$$\sin c = n_2/n_1 = 1.00/1.47 = 0.680$$

 $c = 42.9^{\circ}$

Answer: 42.8°

(c) When the tank is filled with oil (n=1.47), the refractive index of oil equals that of glass. There is no refraction at the glass-oil boundary. The ray travels straight through and leaves at point T.

Final answers

- (a) $\theta \approx 35.5^{\circ}$
- (b) $c \approx 42.8^{\circ}$

(c) Ray exits at point T

Revision tips

- Snell's law: $n_1 \sin \theta_1 = n_2 \sin \theta_2$.
- Critical angle: $\sin c = n_2/n_1 (n_1 > n_2)$.
- If two media have equal n, no refraction occurs.
- Draw diagrams carefully when tracing rays through prisms.
- Remember: larger $n \rightarrow ray$ bends towards the normal.