2022 Ph H1 Q16

Section: Particles and Waves

Topic: Interference

Question Summary

Light from a laser is incident on a diffraction grating. A student considers three statements about the separation of maxima: I: Increasing distance grating→screen increases separation, II: Increasing distance laser→grating increases separation, III: Decreasing slit spacing decreases separation. Which are correct?

Worked Solution

Condition for maxima: $d \sin \theta = m\lambda$.

On the screen, separation of fringes $y \approx L \tan \theta \approx L\theta$ for small θ .

I: Increasing L (grating-screen distance) \rightarrow y increases \rightarrow correct.

II: Distance from laser to grating does not affect geometry of interference \rightarrow false.

III: Decreasing $d \rightarrow larger \sin\theta \rightarrow bigger y \rightarrow correct$.

Final Answer

C — I and III only

Revision Tips

- Diffraction grating condition: $d \sin \theta = m\lambda$.
- ullet Fringe separation depends on λ , d, and grating-screen distance L.
- Laser-grating distance does not affect interference angle.
- Smaller slit spacing (d) increases angular separation.