2021 Ph H2 Q10

Section: Particles and Waves

Topic: Interference and Diffraction Grating

A laser is used with a diffraction grating. (a)(i) Calculate mean angle θ and its uncertainty. (a)(ii) Use grating equation with $d=4.00\times10^{-6}$ m and n=2 to find λ . (a)(iii) Explain why measuring 3rd order maximum improves precision. (b) White light produces central white maximum: explain in terms of path difference.

Worked solution

(a)(i)

Measurements: [14.0, 15.0, 14.5, 14.5, 15.0] Mean $\theta = (14.0+15.0+14.5+14.5+15.0)/5 = 14.60^{\circ}$ Uncertainty $\approx (\text{max-min})/2 = (15.0-14.0)/2 = 0.5^{\circ}$

Answer: $\theta = 14.6^{\circ} \pm 0.5^{\circ}$

(a)(ii)

Grating equation: $d \sin\theta = n\lambda$ $\lambda = d \sin\theta / n = (4.00 \times 10^{-6} \times \sin(14.6^{\circ})) / 2$ = 5.04e-07 m

Answer: 5.0×10^{-7} m (500 nm)

(a)(iii) Using 3rd order maximum increases the angle measured, so the same absolute measurement uncertainty corresponds to a smaller percentage

uncertainty in $sin\theta$. This gives a more precise value for λ .

(b) At the central maximum, the path difference for all wavelengths is zero. So all wavelengths constructively interfere in phase, producing white light.

Final answers

(a)(i)
$$\theta = 14.6^{\circ} \pm 0.5^{\circ}$$

(a)(ii)
$$\lambda \approx 5.0 \times 10^{-7}$$
 m (500 nm, green)

(a)(iii) Higher order = smaller % uncertainty

(b) Central maximum is white: all λ have zero path difference → in phase

Revision tips

- For random uncertainty in repeated measures, use (max-min)/2.
- Diffraction grating: $d \sin \theta = n\lambda$.
- Higher-order fringes give greater precision (smaller % error).
- White light central maximum: zero path difference for all wavelengths.
- Visible λ range ~400–700 nm (violet to red).