2021 Ph H2 Q1

Section: Our Dynamic Universe

Topic: Motion - Projectiles

Question Summary

A skier launches from a ramp at 16.0 m s⁻¹ at an angle of 42.0° to the horizontal.

- (a) Calculate the horizontal and vertical components of the launch velocity.
- (b) Find the time taken to reach the maximum height h.
- (c) The skier takes a further 1.40 s to travel from h to the ground. Calculate the total horizontal distance from ramp to landing.
- (d) State how the skier's kinetic energy before landing compares to the kinetic energy at launch.

(a) Launch velocity components

(i) Horizontal component

 $v_h = v \cos \theta = 16.0 \cos 42.0^{\circ} = 11.9 \,\mathrm{ms}^{-1}$

(ii) Vertical component

 $v_v = v \sin \theta = 16.0 \sin 42.0^{\circ} = 10.7 \,\mathrm{ms^{-1}}$

(b) Time to reach maximum height

At maximum height v=0:

$$v = u + at$$

 $0 = 10.7 - 9.8t \Rightarrow t = \frac{10.7}{9.8} = 1.1 \,\mathrm{s}$

(c) Horizontal distance travelled

Total time = $t_{\rm up} + t_{\rm down} = 1.1 + 1.4 = 2.5 \, {\rm s}.$ $s = v_h \times t = 11.9 \times 2.5 = 29.8 \, {\rm m} \approx 30 \, {\rm m}$

(d) Kinetic energy comparison

Answer: The skier's kinetic energy just before landing is **greater** than at launch.

Reason: The skier has gained kinetic energy due to the conversion of gravitational potential energy as they drop below the ramp level.

Quick Tips

distance.

- Split the launch speed into horizontal and vertical components
- first.Vertical motion determines time; horizontal motion gives
- KE increases when moving to a lower height (gravitational PE converts to KE).