2019 Ph H2 Q10

Section: Particles and Waves

Topic: Diffraction Gratings and Wavelength

(a) Three lasers (red, green, blue) pass through a diffraction grating, slit separation d = 3.3×10^{-6} m. Which colour has the smallest angle θ to the first order maximum? Justify. (b) For one laser, $\theta = 8.9^{\circ}$. (i) Calculate λ . (ii) Determine colour. (iii) Explain why using a grating with larger slit separation (5.0×10^{-6} m) does not give more accurate λ .

Worked solution

- (a) Diffraction grating equation: $d \sin\theta = m\lambda$ (m=1). So $\theta \propto \lambda$. The smallest λ gives the smallest angle.
- Blue has the shortest λ (~450 nm), so it gives the smallest θ .

Answer: Blue

(b)(i) Using d sin $\theta = \lambda$: $\lambda = d \sin\theta = (3.3 \times 10^{-6})(\sin 8.9^{\circ}).$ = 5.11e-07 m = 511 nm.

Answer: 511 nm

(b)(ii) {lam_nm:.0f} nm is in the {colour} region of the spectrum.

Answer: yellow-green

(b)(iii) Accuracy improves if maxima are further apart (larger θ).

From $d \sin\theta = m\lambda$, increasing d makes $\sin\theta$ smaller, so angles are reduced. This gives less separation between fringes and less accurate measurement.

Answer: Incorrect suggestion — larger d decreases angular separation, not increases it.

Final answers

(a) Blue laser → smallest θ

(b)(i) $\lambda \approx 511 \text{ nm}$

(b)(ii) yellow-green

(b)(iii) Larger d → less separation → less accuracy Revision tips

- Grating formula: $d \sin \theta = m\lambda$.
- Smaller $\lambda \rightarrow$ smaller θ .
- Convert λ to nm to compare with visible spectrum.
- For more accuracy, want maxima further apart (larger θ).
- Larger d gives smaller $\theta \rightarrow$ reduces accuracy.