2019-Ph-H2-Q4

Section: Our Dynamic Universe

Topic: Gravitation

Summary:

A communications satellite orbits at a height of $36.0 \times 10^6 \, \mathrm{m}$ above Earth's surface.

Given:

- Mass of Earth: $M=6.0 \times 10^{24}\,\mathrm{kg}$
- Radius of Earth: $R_E = 6.4 \times 10^6 \, \mathrm{m}$
- Gravitational force on the satellite: $F = 57 \, \mathrm{N}$.

Tasks:

- (a) Find the distance between the centre of the Earth and the satellite.
- (b) Calculate the mass of the satellite.
- (c) Determine the gravitational field strength g at the satellite.
- (d) Compare gravitational forces for a second satellite (quarter mass, half distance).

Solution:

(a) Distance from Earth's centre:

 $r = R_E + \text{height} = 6.4 \times 10^6 + 36.0 \times 10^6 = 42.4 \times 10^6 \,\text{m}.$

(b) Mass of the satellite: **Gravitational force:**

$$F = G \frac{Mm}{r^2} \Rightarrow m = \frac{Fr^2}{GM}.$$

Substitute: $57(42.4 \times 10^6)^2$

$$m = \frac{1}{6.67 \times 10^{-11} \times 6.0 \times 10^{24}}.$$

$$m \approx \frac{57 \times 1.80 \times 10^{15}}{4.00 \times 10^{14}} \approx 256 \,\mathrm{kg}.$$

Answer: $m \approx 2.6 \times 10^2 \, \mathrm{kg}$.

$g = \frac{F}{m} = \frac{57}{256} \approx 0.22 \,\mathrm{N \, kg^{-1}}.$

(c) Gravitational field strength at the satellite:

(d) Second satellite comparison: **Gravitational force:**

 $F \propto \frac{m}{r^2}$.

• Distance is $\frac{1}{2}r$, so $\frac{1}{r^2}$ increases by 4.

• Mass is $\frac{1}{4}m$.

 $F_2 = \frac{1}{4}m \cdot 4\frac{1}{r^2} = F.$

Thus:

satellite.

Answer: The gravitational force is the same as for the first

Guidance for Students:

Always add Earth's radius to altitude for orbital distance.

- Use the universal law of gravitation $F = G \frac{Mm}{r^2}$.
- Gravitational field strength ${\it g}$ can be found from ${\it g}={\it F}/m$ or $g = GM/r^2$

Revision Tips:

- Remember: $G = 6.67 \times 10^{-11} \, {\rm Nm^2 \, kg^{-2}}$
- Carefully handle large exponents (scientific notation).
- For proportionality problems, compare each factor (mass, distance) step by step.