2019-Ph-H2-Q2

Section: Our Dynamic Universe

Topic: Forces, Energy and Power

Summary:

A student of mass $m=55\,\mathrm{kg}$ abseils down a building using a rope attached at point X, making an angle of 15° to the vertical wall.

We are to:

- (a) calculate the student's weight W,
- (b) find the tension T in the rope,
- (c) determine what happens to T as the angle decreases.

(a) Weight W:

$$W = mg = 55 \times 9.8 = 539 \,\mathrm{N} \approx 540 \,\mathrm{N}.$$

(b) Tension T:

The vertical component of tension balances weight:

$$T\cos 15^{\circ} = W.$$

$$T = \frac{W}{\cos 15^{\circ}} = \frac{540}{0.9659} \approx 560 \,\mathrm{N}.$$

(c) Effect of decreasing angle:

- As the angle decreases, $\cos\theta$ increases.
- Therefore, $T = W/\cos\theta$ decreases.

Answer: Tension decreases as the rope becomes closer to vertical.

Guidance for Students:

- · Always resolve tension into vertical and horizontal components.
- · For static cases, vertical forces balance the weight.

Revision Tips:

- W = mg (ensure units in N).
- Use $T = W/\cos\theta$ when rope is angled.
- Visualise forces with a diagram it clarifies the trig relationships.