2018 Ph H2 Q9

Section: Particles and Waves

Topic: Refraction, critical angle, dispersion

- (a) A ray of monochromatic light is incident on a prism at 45°. The refracted angle inside the prism is 22°. Show that the refractive index of glass is 1.8.
- (b)(i) Define the critical angle.
- (ii) Calculate the critical angle for this light in the prism.
- (iii) Complete the ray diagram to show refraction through the prism and emerging ray.
- (c) White light gives a spectrum. The prism is replaced with glass of lower refractive index. Describe one difference in the spectrum.

Worked solution

(a)

Refractive index $n = \sin i / \sin r$. = $\sin 45^{\circ} / \sin 22^{\circ} = 0.707/0.375 = 1.89$.

Answer: 1.8

(b)(i)

The critical angle is the angle of incidence in the denser medium for which the angle of refraction in the less dense medium is 90°.

Answer: Angle in glass giving 90° in air

(b)(ii) $\sin c = 1/n$.

$$= 1/1.8 = 0.530.$$

c = 32.0°.

Answer: 34°

(b)(iii)

Ray diagram should show refraction into prism at 22°, then refraction out at 68° to surface normal, emerging into air with angle 45° relative to surface. Angles must be marked: 22°, 68°, etc.

Answer: Diagram with 22° and 68° angles marked

(c)

With a prism of lower refractive index, dispersion is reduced. So the spectrum is less spread out — angles of deviation are smaller.

Answer: Spectrum less spread out

Final answers

(a)
$$n = 1.8$$

(b)(i) Critical angle = incidence angle giving 90° in air

(b)(ii)
$$c = 32.0^{\circ} \approx 34^{\circ}$$

- (b)(iii) Ray diagram with 22° and 68° marked
- (c) Spectrum less spread out

Revision tips

- Refractive index n = sin i / sin r.
- Critical angle c: $\sin c = 1/n$.
- At c, refracted ray grazes along boundary.
- Higher refractive index → greater dispersion.
- Lower refractive index → spectrum less spread out.