2018 Ph H2 Q10

Section: Particles and Waves

Topic: Atomic spectra, Bohr model, redshift

- (a) State two features of the Bohr model of the atom.
- (b) From hydrogen energy levels, calculate frequency of photon for transition $E_3 \rightarrow E_1$.
- (c) A hydrogen line shifts from 656 nm in the lab to 661 nm in a distant galaxy. Calculate the galaxy's recessional velocity.

Worked solution

(a)

Two features of Bohr model:

- Electrons orbit the nucleus in discrete, quantised energy levels.
- Energy is absorbed or emitted only when electrons change levels, in photons of energy hf.

Answer: Quantised orbits, photons emitted/absorbed in transitions

(b)

Energy difference $\Delta E = E_3 - E_1$. = $(-2.42 \times 10^{-19}) - (-21.8 \times 10^{-19}) = 1.94e-18$ J. Frequency f = $\Delta E/h = 1.94e-18/6.63e-34 = 2.92e+15$ Hz.

Answer: 2.9×10^{15} Hz

(c)

Recessional velocity from redshift:

$$v/c = (\lambda_obs - \lambda_lab)/\lambda_lab.$$

= $(661 - 656)/656 = 0.00762.$
 $v = 2.29e+06 \text{ m s}^{-1}.$

Answer: $2.3 \times 10^6 \text{ m s}^{-1}$

Final answers

(a) Bohr model: electrons in quantised levels; photons absorbed/emitted in transitions

(b)
$$f = 2.9 \times 10^{15} \text{ Hz}$$

(c)
$$v = 2.3 \times 10^6 \text{ m s}^{-1}$$

Revision tips

- Bohr model: electrons occupy fixed energy levels.
- Energy change $\Delta E = hf$.
- Use given energy levels directly to find photon frequencies.
- Redshift: $(\Delta \lambda/\lambda) = v/c$ for small z.
- Greater redshift → higher recessional velocity → evidence for expanding universe.