2018 Ph H1 Q15 Section: Electricity Topic: Current, PD, Power, Resistance #### **Question Summary** A 12 V battery with negligible internal resistance is connected to a 10 Ω resistor in series with two 10 Ω resistors in parallel. A switch S controls the bottom branch of the parallel pair. A voltmeter V measures the p.d. across the lone 10 Ω resistor. A1 measures total current from the battery. A2 measures current in the top branch of the parallel pair. Which of the student's statements about voltmeter and ammeter readings are correct? #### **Worked Solution** #### Case 1 - Switch S open Only the top 10 Ω resistor remains in the parallel section, so total resistance = 10 + 10 = 20 Ω . Total current = 12/20 = 0.60 A. Voltmeter across lone 10 Ω resistor: V = IR = 0.60 \times 10 = 6.0 V. \square (Statement I correct) A2 measures branch current = 0.60 A. \square (Statement II correct) ### Case 2 - Switch S closed Two 10 Ω resistors in parallel \rightarrow Req = $(10 \times 10) / (10 + 10) = 5.0 <math>\Omega$. Total circuit resistance = $10 + 5 = 15 \Omega$. Total current = 12/15 = 0.80 A. \square (Statement III correct) Final Answer: E (I, II and III are correct) ## **Revision Tips** - For parallel resistors: 1/Req = 1/R1 + 1/R2. - When switch changes state, redraw the circuit to simplify. - Series resistors share current; parallel resistors share voltage. - Always calculate total resistance first, then use I = V/R. - Voltmeter across a resistor shows V = IR for that component only.