2018 Ph H1 Q14

Section: Particles and Waves

Topic: Refraction of Light

Question Summary

A ray of monochromatic light of wavelength 6.30×10^{-7} m in air passes into glass (n = 1.50). What is the frequency of this light in the glass?

Worked Solution

Frequency does not change when light crosses a boundary.

Calculate frequency in air: $f = c / \lambda$.

$$f = (3.00 \times 10^8) / (6.30 \times 10^{-7}) \approx 4.76 \times 10^{14} \text{ Hz}.$$

Therefore the frequency in the glass is the same.

Final Answer

$$D - 4.76 \times 10^{14} Hz$$

Revision Tips

- Frequency is constant across a boundary.
- Only speed and wavelength change with refractive index.
- Use $f = c / \lambda_air$ to calculate once.