2017 H2 Q12

Section: Electricity

Topic: e.m.f., internal resistance, terminal p.d.,

power

Two identical cells in the battery: e.m.f. 1.5 V each, internal resistance 2.7 Ω each. Circuit current (ammeter) is 64 mA. Voltmeter is across the lamp.

(a) Meaning of an e.m.f. of 1.5 V

The e.m.f. is the energy supplied per coulomb of charge by the cell. An e.m.f. of 1.5 V means the cell provides 1.5 J of energy to each coulomb of charge passing through it.

(b)(i) Lost volts in the battery

Lost volts = current \times total internal resistance.

Total internal resistance = r_1 total = $r_1 + r_2 = 2.7 + 2.7$ = 5.4 Ω .

Lost volts = I r_total = $0.064 \times 5.4 = 0.3456 \text{ V} \approx 0.35 \text{ V}$.

Answer: 0.35 V

(b)(ii) Voltmeter reading (terminal p.d. across lamp)

Total e.m.f. of the battery = 1.5 + 1.5 = 3.0 V.

Terminal p.d. = $E_{total} - lost volts = 3.0 - 0.3456 = 2.6544 V.$

Answer: ≈ 2.65 **V**

(b)(iii) Power dissipated by the lamp

P = VI across the lamp.

 $P = 2.6544 \times 0.064 = 0.1699 W.$

Answer: ≈ **0.17 W**

Revision tips

- Lost volts = I r_internal; terminal p.d. = E Ir.
- In series: e.m.f.s add; internal resistances add.
- Power in a component: $P = VI = I^2R = V^2/R$ (use whichever data are given).