2017 Ph H1 Q13

Section: Particles and Waves

Topic: Refraction of Light

Question Summary

A ray of blue light passes from air into a transparent block. From the diagram, the angles imply incidence $\approx 60^{\circ}$ in air and refraction $\approx 40^{\circ}$ in the block. Find the speed of light in the block.

Worked Solution

Snell's law (air to block): $n = \sin i / \sin r$ (taking $n = \sin i / \sin r$ (taking n = 1).

With i = 60° and r = 40°, n = $\sin 60^{\circ}$ / $\sin 40^{\circ} \approx 0.866$ / $0.643 \approx 1.35$.

Speed in the block $v = c / n \approx 3.00 \times 10^8 / 1.35 \approx 2.23 \times 10^8 \text{ m s}^{-1}$.

Final Answer

 $D - 2.23 \times 10^8 \text{ m s}^{-1}$

Revision Tips

- Use v = c/n once the refractive index is found from Snell's law.
- Always use angles to the normal. Round sensibly to match data/MI.