Beta decay occurs when a neutron in an unstable nucleus decays into a proton and releases an electron and an antineutrino.

The following statement represents an example of beta decay.

$$^{131}_{P}Z \rightarrow ^{131}_{54}Xe + ^{0}_{-1}e + \overline{v}_{e}$$

(i) (A) Determine the number represented by P. (a) Space for working and answer

1

(B) Identify element Z.

1

(ii) (A) In the Standard Model, state the type of fermion that includes electrons.

1

(B) W-bosons and Z-bosons are the force-mediating particles associated with beta decay.

Name the fundamental force associated with beta decay.

1

[Turn over

7. (continued)

(b) Positron Emission Tomography (PET) is a medical imaging technique, which uses isotopes that emit positrons.

Suitable isotopes are produced by bombarding a target with protons that have been accelerated in a cyclotron. A cyclotron consists of two D-shaped, hollow metal structures called 'dees', placed in a vacuum.

The diagram shows the cyclotron viewed from above.

Protons are released from rest at R and are accelerated across the gap between the 'dees' by a voltage of 32.0 kV.

(i) Determine the speed of a proton as it reaches S. Space for working and answer

5

7. (b) (continued)

(ii) Explain why an alternating voltage is used in the cyclotron.

1

(c) A proton enters a region of magnetic field as shown.

Determine the direction of the force exerted by the magnetic field on the proton immediately after entering the magnetic field.

1

[Turn over