25. Astronomers use the following relationship to estimate the mass M of a galaxy

$$M = \frac{v^2 r}{G}$$

where v is the orbital speed of a star in the outer regions of the galaxy, in m s⁻¹

r is the orbital radius of the star, in m

 ${\it G}$ is the Universal Constant of Gravitation.

A star orbits at a radius of 4.0×10^{20} m in the outer regions of the Triangulum galaxy. The orbital speed of the star is 120 km s⁻¹.

Based on this information, the mass of the Triangulum galaxy is:

- A $3.8 \times 10^{20} \text{ kg}$
- B $7.2 \times 10^{32} \text{ kg}$
- C $8.6 \times 10^{34} \text{ kg}$
- D $7.2 \times 10^{35} \text{ kg}$
- E 8.6×10^{40} kg.