2. A train consists of a steam engine coupled to a carriage. The train is accelerating along a straight level track.

The steam engine provides a driving force of 1.15×10^5 N.

The mass of the steam engine is 9.75×10^4 kg.

The mass of the carriage and passengers is 3.56×10^4 kg.

The effects of friction can be ignored.

(a) Determine the tension in the coupling between the steam engine and the carriage.

Space for working and answer

page 06

(continued)

(b) Later in the journey, the train is travelling at a constant speed as it approaches a bridge. Two students are standing on the bridge.

(i) The engine driver sounds a whistle. The whistle emits sound with a frequency of 511 Hz.

The frequency of the sound heard by the students standing on the bridge is 531 Hz.

The speed of sound in air is 340 m s^{-1} .

Calculate the speed of the train.

Space for working and answer

3

(ii) One student suggests that a passenger sitting in the carriage behind the engine will hear a lower frequency of sound than the frequency emitted by the whistle.

State whether the student is correct.

You must justify your answer.

2

page 07

[Turn over