The Sun emits energy at an average rate of $4{\cdot}1\times10^{26}\,J\,s^{-1}.$ This energy is produced by nuclear reactions taking place inside the Sun.

The following statement shows one reaction that takes place inside the Sun.

$${}_{1}^{2}H + {}_{1}^{2}H \rightarrow {}_{2}^{3}He + {}_{0}^{1}n$$

(a) State the name given to this type of nuclear reaction.

(b) The mass of the particles involved in this reaction are shown in the table.

Particle	Mass (kg)
² ₁ H	3·3436 × 10 ^{−27}
³ ₂ He	5·0082 × 10 ⁻²⁷
¹ ₀ n	1·6749 × 10 ⁻²⁷

Determine the energy released in this reaction.

4

Space for working and answer

MARKS DO NOT WRITE IN THIS MARGIN

8. (continued)

(c) Determine the number of these reactions that would be required per second to produce the Sun's average energy output.

2

Space for working and answer

[Turn over

