- Stars emit radiation with a range of wavelengths. The peak wavelength of the radiation depends on the surface temperature of the star.
 - (a) The graph shows how the energy emitted per second per unit area varies with the wavelength λ of the radiation for a star with a surface temperature of 5000 K.

A second star has a surface temperature of 6000 K.

On the graph above, add a line to show how the energy emitted per second per unit area varies with the wavelength λ of the radiation for the second star.

(An additional graph, if required, can be found on page 44)

2

3

(continued)

(b) The table gives the surface temperature T, in kelvin, of four different stars and the peak wavelength $\lambda_{\it peak}$ of radiation emitted from each star.

T(K)	λ_{peak} (m)
7700	3⋅76 × 10 ⁻⁷
8500	3·42 × 10 ^{−7}
9600	3·01 × 10 ⁻⁷
12 000	2·42 × 10 ⁻⁷

Use all the data in the table to show that the relationship between the surface temperature T of a star and the peak wavelength λ_{peak} radiated from the star is

$$T = \frac{2 \cdot 9 \times 10^{-3}}{\lambda_{peak}}$$

Space for working and answer

[Turn over

