7. The terminal velocity v_t of a skydiver is given by the relationship

$$v_{t} = \sqrt{\frac{2mg}{\rho A C_{d}}}$$

where

 $\it m$ is the mass of the skydiver in kg

g is the gravitational field strength in N kg $^{-1}$

 C_d is the drag coefficient

 ρ is the density of air in kg m⁻³

A is the area of the skydiver in m^2 .

When in freefall, a skydiver of mass 95 kg has a drag coefficient of $1\cdot 0$ and a terminal velocity of $44\,\mathrm{m\,s^{-1}}$.

The gravitational field strength is $9.8 \,\mathrm{N\,kg^{-1}}$ and the density of air is $1.21 \,\mathrm{kg\,m^{-3}}$.

The area of the skydiver is

A $0.59 \,\mathrm{m}^2$

B $0.79 \, \text{m}^2$

C 0⋅89 m²

D $4 \cdot 2 \, \text{m}^2$

E $35 \, \text{m}^2$.