7. The following diagram gives information on the Standard Model of fundamental particles.

(a) Explain why the proton and the neutron are **not** fundamental particles.

1

(b) An extract from a data book contains the following information about three types of sigma (Σ) particles. Sigma particles are made up of three quarks.

Particle	Symbol	Quark Content	Charge	Mean lifetime (s)
sigma plus	Σ^+	up up strange	+1 <i>e</i>	8.0×10^{-11}
neutral sigma	Σ^0	up down strange	0	7·4 × 10 ⁻²⁰
sigma minus	Σ^-	down down strange	-1 <i>e</i>	1.5 × 10 ⁻¹⁰

(i) A student makes the following statement. All baryons are hadrons, but not all hadrons are baryons. Explain why this statement is correct.

2

(ii) The charge on an up quark is $+\frac{2}{3}e$. Determine the charge on a strange quark. Space for working and answer

1

Page 18

1

3

7. (continued)

- (c) (i) State the name of the force that holds the quarks together in the sigma (Σ) particle.
 - (ii) State the name of the boson associated with this force. 1
- (d) Sigma minus (Σ^-) particles have a mean lifetime of 1.5 \times 10⁻¹⁰ s in their frame of reference.

 Σ^- are produced in a particle accelerator and travel at a speed of 0.9c relative to a stationary observer.

Calculate the mean lifetime of the Σ^- particle as measured by this observer.

Space for working and answer

Page 19