(a)
$$y = \frac{1}{3}x^{3} - x^{2} - 3x + 1$$

 $\frac{dy}{dx} = x^{2} - 2x - 3$
 $\frac{dy}{dx} = x^{2} - 2x - 3$
 $\frac{dy}{dx} = 0$: $\frac{x^{2} - 2x - 3}{(x + 1)(x - 3)} = 0$

$$x+1=0 \text{ or } x-3=0$$

$$x=-1 \text{ or } x=3$$
When $x=-1$, $y=\frac{1}{3}(-1)^3-(-1)^2-3(-1)+1$

$$=-\frac{1}{3}-1+3+1$$

$$=\frac{8}{3} \qquad (-1,\frac{8}{3})$$

= 19

X | -1 | 3 | 6 y | 8 | -8 | 19 = Greatest value = 19

Least value = -8

= 9 - 9 - 9 + 1 $= -8 \qquad (3,-8)$

= 72-36-18+1

When
$$x=3$$
, $y=\frac{1}{3}(3^3)-3^2-3(3)+1$
= $9-9-9+$
= -8 (3

$$= 9 - 9 - 9 + 3$$

$$= -8$$
(3)
(b) When $x = 6$, $y = \frac{1}{3}(6^{2}) - 6^{2} - 3(6) + 1$

Question			Generic scheme	Illustrative scheme	Max mark
9.	(a)		•¹ differentiate two non-constant terms	$\bullet^1 \operatorname{eg} x^2 - 2x$	4
			•² complete derivative and equate to 0	$ \bullet^2 x^2 - 2x - 3 = 0 $	
			• find <i>x</i> -coordinates • find <i>y</i> -coordinates		

Notes:

- 1. For a numerical approach, award 0/4.
- 2. •² is only available if = 0, appears at the •² stage or in working leading to •³. However, see Candidate A.
- 3. \bullet ³ is only available for solving a quadratic equation.
- 4. \bullet^3 and \bullet^4 may be awarded vertically.

Commonly Observed Responses:							
Candidate A	Candidate B - derivative never equated to 0						
Stationary points when $\frac{dy}{dx} = 0$	$x^{2}-2x-3$ $(x+1)(x-3)$ $x = -1, 3$ $y = \frac{8}{3}, -8$ • • • • • • • • • • • • •						
$\frac{dy}{dx} = x^2 - 2x - 3 \qquad \bullet^1 \checkmark \bullet^2 \checkmark$	$x = -1, 3$ • 3 \checkmark_1						
$\frac{dx}{dy} = (x+1)(x-3)$	$y = \frac{8}{3}, -8$						
x = -1, 3							
$y = \frac{8}{3}, -8$							
(b) \bullet^5 evaluate y at $x = 6$	• ⁵ 19	2					
•6 state greatest and least values	• 6 greatest = 19 and least = -8						

Notes:

- 5. 'Greatest (6,19); least (3,-8)' does not gain \bullet^6 .
- 6. Where x = -1 was not identified as a stationary point in part (a), y must also be evaluated at x = -1 to gain \bullet^6 .
- 7. 6 is not available for using y at a value of x, obtained at 3 stage, which lies outwith the interval $-1 \le x \le 6$.
- 8. 6 is only available where candidates have attempted to evaluate y at x = 6.

Commonly Observed Responses: