9 "Upper - lower" =
$$(6+4x-2x^2)-(x^3-6x^2+11x)$$

= $6+4x-2x^2-x^3+6x^2-11x$
= $-x^3+4x^2-7x+6$
Area = $\int_0^2 (-x^2+4x^2-7x+6) dx$

$$= \left[-\frac{x^{4}}{4} + \frac{4x^{3}}{3} - \frac{7x^{2}}{2} + 6x \right]_{0}^{2}$$

$$= \left(-\frac{2^{4}}{4} + \frac{4(2^{3})}{3} - \frac{7(2^{2})}{2} + 6(2) \right) - (0)$$

$$= \left(-\frac{2^{4}}{4} + \frac{4(2^{3})}{3} - \frac{7(2^{2})}{2} + 6(2)\right) - (0)$$

$$= \left(-\frac{2^{4}}{4} + \frac{4(2^{3})}{3} - \frac{7(2^{2})}{2} + 6(2)\right) - (0)$$

$$= \left(-\frac{24}{4} + \frac{4(2)}{3} - \frac{7(2)}{2} + 6(2)\right) - (0)$$

$$= -16 + 32 - 28 + 12$$

$$= -\frac{16}{4} + \frac{32}{3} - \frac{28}{2} + 12$$

$$= -\frac{16}{4} + \frac{32}{3} - \frac{26}{2} + 12$$

$$= -4 + \frac{32}{3} - \frac{26}{2} + 12$$

= 14 square units

Question		n	Generic scheme	Illustrative scheme	Max mark
7.			Method 1	Method 1	5
			•1 integrate using 'upper' – 'lower'	$\int \left(\left(6 + 4x - 2x^2 \right) - \left(x^3 - 6x^2 + 11x \right) \right) dx$	
			•² identify limits	$\int_{0}^{2} \left(\left(6 + 4x - 2x^{2} \right) - \left(x^{3} - 6x^{2} + 11x \right) \right) dx$	
			•³ integrate	$6x - \frac{7}{2}x^2 + \frac{4}{3}x^3 - \frac{1}{4}x^4$	
			• ⁴ substitute limits	$^{4} \left(6(2) - \frac{7}{2}(2)^{2} + \frac{4}{3}(2)^{3} - \frac{1}{4}(2)^{4}\right) - 0$	
			•5 evaluate area	$\frac{14}{3}$ (units ²)	
			Method 2	Method 2	
			•1 know to integrate between appropriate limits for both equations	$\int_{0}^{2} \dots dx \text{ and } \int_{0}^{2} \dots dx$	
			•² integrate both functions	$6x + \frac{4x^2}{2} - \frac{2x^3}{3} \text{ and } \frac{x^4}{4} - \frac{6x^3}{3} + \frac{11x^2}{2}$	
			• 3 substitute limits into both expressions	$ \left(6(2) + \frac{4(2)^2}{2} - \frac{2(2)^3}{3}\right) - 0 \text{ and } $	
				$\left(\frac{\left(2\right)^4}{4} - \frac{6\left(2\right)^3}{3} + \frac{11\left(2\right)^2}{2}\right) - 0$	
			• ⁴ evaluate both integrals	$\frac{44}{3}$ and 10	
			•5 evidence of subtracting areas	$\frac{14}{3}$ (units ²)	

Question	Generic scheme	Illustrative scheme	Max mark
----------	----------------	---------------------	-------------

7. (continued)

Notes:

- Correct answer with no working award 1/5.
- Do not penalise lack of 'dx' at \bullet^1 in Method 1.
- In Method 1, limits and 'dx' must appear by the \bullet^2 stage for \bullet^2 to be awarded and in Method 2 by the \bullet^1 stage for \bullet^1 to be awarded.
- In Method 1, treat the absence of brackets at •1 stage as bad form only if the correct integrand 4. is obtained. See Candidates C and D.
- Where a candidate differentiates one or more terms, or fails to integrate, no further marks are available.
- In Method 1, accept unsimplified expressions such as $6x + \frac{4x^2}{2} \frac{2x^3}{3} \frac{x^4}{4} + \frac{6x^3}{3} \frac{11x^2}{3}$ at •3.
- Do not penalise the inclusion of +c.
- 8. Do not penalise the continued appearance of the integral sign or dx after integrating.
- 9. 5 is not available where solutions include statements such as ' $-\frac{14}{2} = \frac{14}{2}$ square units'. See Candidates A and B.
- 10. In Method 1, where a candidate uses an invalid strategy the only marks available are •3 for integrating a polynomial with at least four terms (of different degree) and •4 for substituting the limits of 0 and 2 into the resulting expression. However, see Candidate E.
- 11. At •4, do not penalise candidates for who reduce powers of 0. For example writing 0 in place of 0^4 . Similarly, do not penalise candidates writing 0 in place of 6(0) . However, candidates who write 0^3 in place of 0^4 or 2(0) in place of 6(0) do not gain \bullet^4 .

Commonly Observed Responses:

Candidate A - switched limits

$$\int_{2}^{0} ((6+4x-2x^{2})-(x^{3}-6x^{2}+11x)) dx$$

$$=6x-\frac{7}{2}x^2+\frac{4}{3}x^3-\frac{1}{4}x^4$$

$$=0-\left(6(2)-\frac{7}{2}(2)^2+\frac{4}{3}(2)^3-\frac{1}{4}(2)^4\right)$$

$$=-\frac{14}{3}$$

$$=\frac{14}{3}$$

•2
$$\checkmark$$

$$\int_{0}^{2} \left(\left(x^{3} - 6x^{2} + 11x \right) - \left(6 + 4x - 2x^{2} \right) \right) dx$$
•3 \checkmark

$$\int_{0}^{2} x^{3} - 4x^{2} + 7x - 6 dx$$

$$= \frac{1}{4}x^{4} - \frac{4}{3}x^{3} + \frac{7}{2}x^{2} - 6x$$

$$\left(\frac{1}{4}(2)^{4} - \frac{4}{3}(2)^{3} + \frac{7}{2}(2)^{2} - 6(2) \right) - (0)$$

$$\int_{0}^{2} x^{3} - 4x^{2} + 7x - 6 \, dx$$

$$= \frac{1}{4}x^4 - \frac{4}{3}x^3 + \frac{7}{2}x^2 - 6x$$

$$\left(\frac{1}{4}(2)^4 - \frac{4}{3}(2)^3 + \frac{7}{2}(2)^2 - 6(2)\right) - (0)$$

$$-\frac{3}{3}(2) + \frac{2}{2}(2) - 6(2) - (0)$$

$$\therefore$$
 Area = $\frac{14}{3}$

Question	Generic sche	eme	Illustrative scheme	Max mark					
7. (continued)									
Candidate C - n	nissing brackets		Candidate D - missing brackets						
$\int_{0}^{2} 6 + 4x - 2x^{2} - x$			$\int_{0}^{2} 6 + 4x - 2x^{2} - x^{3} - 6x^{2} + 11x dx$	• ¹ x • ² ✓ ₁					
$\int_{0}^{6} 6-7x+4x^{2}-x^{2}$	dx	o ¹ ✓ • ² ✓	$\int_{0}^{\infty} 6 + 15x - 8x^2 - x^3 dx$						
			$6x + \frac{15}{2}x^2 - \frac{8}{3}x^3 - \frac{1}{4}x^4$	•³ √ 1					
			$\left \left(6(2) + \frac{15}{2}(2)^2 - \frac{8}{3}(2)^3 - \frac{1}{4}(2)^4 \right) - (0) \right $	• ⁴ ✓ ₁					
			50 3	• ⁵ ✓ ₁					
Candidate E - '	upper' + 'lower'		Candidate F - incorrect substitution						
$\int_{0}^{2} \left(\left(6 + 4x - 2x^{2} \right) \right) dx$	$+\left(x^3-6x^2+11x\right)dx$	•¹ x •² ✓ ₁	$\int_{0}^{2} \left(\left(6 + 4x - 2x^{2} \right) - \left(x^{3} - 6x^{2} + 11x \right) \right) dx$	•¹ √ •² √					
$6x + \frac{15}{2}x^2 - \frac{8}{3}x^3$	$3 + \frac{1}{4}x^4$	•³ √ 1	$\left \left(6x + 2x^2 - \frac{2}{3}x^3 \right) - \left(\frac{1}{4}x^4 - 2x^3 + \frac{11}{2}x^2 \right) \right $	•³ ✓					
$\left \left(6(2) + \frac{15}{2}(2)^2 \right) \right $	$-\frac{8}{3}(2)^3 + \frac{1}{4}(2)^4 - 0$	• ⁴ ✓ ₁	$\left \left(6(2) + 2(2)^2 - \frac{2}{3}(2)^3 \right) - \left(\frac{1}{4}(0)^4 - 2(0)^3 + \frac{1}{4}(0)^4 - 2(0)^3 + \frac{1}{4}(0)^4 + \frac{1}{4}(0)^4 - \frac{1}{4}(0)^4 + 1$	$(0)^2$					
$\frac{74}{3}$		• ⁵ √ ₁	$\frac{44}{3}$	• ⁵ ✓ 2					