$$y = ax^{\frac{10-(-2)}{4-0}} = \frac{12}{4} = 3$$
 $\log_5 y = \log_5 ax^{\frac{1}{2}}$
 $c = -2$ from the graph.

 $\log_5 y = \log_5 a + \log_5 x$
 $\log_5 y = \log_5 a + \log_5 x$

 $a = \frac{1}{5^2} = \frac{1}{25}$

 $y = ax^{3}$

Question		n	Generic scheme	Illustrative scheme	Max mark
6.			Method 1	Method 1	5
			•¹ state linear equation	$\bullet^1 \log_5 y = 3\log_5 x - 2$	
			•² introduce logs	$\bullet^2 \log_5 y = 3\log_5 x - 2\log_5 5$	
			•³ use laws of logs	$\log_5 y = \log_5 x^3 - \log_5 5^2$	
			• ⁴ use laws of logs		
			$ullet^5$ state a and b	•5 $a = \frac{1}{25}, b = 3 \text{ or } y = \frac{x^3}{25}$	
			Method 2	Method 2	5
			•¹ state linear equation	$\bullet^1 \log_5 y = 3\log_5 x - 2$	
			•² use laws of logs	• $\log_5 y = \log_5 x^3 - 2$	
			•³ use laws of logs	$\bullet^3 \log_5 \frac{y}{x^3} = -2$	
			• ⁴ use laws of logs	$\bullet^4 \frac{y}{x^3} = 5^{-2}$	
			$ullet^5$ state a and b	•5 $a = \frac{1}{25}, b = 3 \text{ or } y = \frac{x^3}{25}$	
			Method 3	Method 3 The equations at •¹, •² and •³ must be stated explicitly	5
			•1 introduce logs to $y = ax^b$	$\bullet^1 \log_5 y = \log_5 ax^b$	
			•² use laws of logs	$\bullet^2 \log_5 y = b \log_5 x + \log_5 a$	
			•³ interpret intercept	$\bullet^3 \log_5 a = -2$	
			• ⁴ use laws of logs	$\bullet^4 a = \frac{1}{25}$	
			• ⁵ interpret gradient	\bullet^5 $b=3$	

Question	Generic scheme	Illustrative scheme	Max mark
----------	----------------	---------------------	-------------

6. (continued)

Notes

- 1. In any method, marks may only be awarded within a valid strategy using $y = ax^b$. For example, see Candidates C and D.
- 2. Markers must identify the method which best matches the candidate's approach; markers must not mix and match between methods.
- 3. Penalise the omission of base 5 at most once in any method.
- 4. Where candidates use an incorrect base then only \bullet^2 and \bullet^3 are available (in any method).
- 5. Do not accept $a = 5^{-2}$.
- 6. In Method 3, do not accept m=3 or gradient = 3 for \bullet^5 .
- 7. Do not penalise candidates who score out "log" from equations of the form $\log_5 m = \log_5 n$.

Commonly Observed Responses

Candidate A - missing equations at \bullet^1 , \bullet^2 and \bullet^3 in Method 3

$$a = \frac{1}{25}$$

$$h = 3$$

$$b=3$$

$$b = \frac{1}{25}$$

$$a = 3$$

Candidate C - Method 2

$$y = 3x - 2$$

$$\log_5 y = 3\log_5 x - 2$$

$$\log_5 y = \log_5 x^3 - 2$$

$$y = x^3 - 2$$

•⁵ ✓

Candidate D - Method 2

$$\log_5 y = 3\log_5 x - 2$$

$$\log_5 y = \log_5 x^3 - 2$$

$$\frac{y}{x^3} = -2$$

Candidate E - use of coordinate pairs

$$\log_5 x = 4$$
 and $\log_5 y = 10$

$$x = 5^4$$
 and $y = 5^{10}$

$$\log_5 x = 0$$
, $\log_5 y = -2$

$$\Rightarrow x = 1, y = 5^{-2}$$

$$5^{-2} = a \times 1^b \implies a = \frac{1}{25}$$

$$5^{10} = 5^{-2} \times 5^{4b} \implies -2 + 4b = 10$$

$$\Rightarrow b = 3$$

Candidates may use
$$(0,-2)$$
 for \bullet^1 and \bullet^2 and $(4,10)$ for \bullet^3 .