$$|\vec{EF}| = \sqrt{2^2 + 1^2 + 3^2} = \sqrt{4 + 1 + 9}$$

$$|\vec{EP}| = |\vec{EP}| |\vec{EF}| \cos \theta$$

$$|\vec{EP}| = \sqrt{53} \sqrt{14} \cos \theta$$

$$\cos \theta = \frac{16}{\sqrt{53}} \sqrt{14} \cos \theta$$

 $(3) (a) \vec{E}_{p} = \vec{O}_{p} - \vec{O}_{E} = \begin{pmatrix} 2 \\ -3 \\ 4 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} = \begin{pmatrix} 4 \\ -4 \\ 6 \end{pmatrix}$

(b) (1)
$$\overrightarrow{ED} \cdot \overrightarrow{EF} = \begin{pmatrix} 1 \\ -4 \\ 6 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} = 2 + (-4) + 18 = 16$$

(ii) $|\overrightarrow{ED}| = |\overrightarrow{1^2 + (-4)^2 + 6^2}| = \sqrt{1 + 16 + 36}| = \sqrt{53}$
 $|\overrightarrow{EF}| = |\cancel{2^2 + 1^2 + 3^2}| = \sqrt{4 + 1 + 9}| = \sqrt{14}$

0 = cos (\(\sq \sq \sq \sq \)

≈ 54.0

= 54-0288 ---

 $\overrightarrow{EF} = \overrightarrow{OF} - \overrightarrow{OE} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$

Question			Generic scheme	Illustrative scheme	Max mark
3.	(a)		●¹ find \overrightarrow{ED}	$ullet^1 \begin{pmatrix} 1 \\ -4 \\ 6 \end{pmatrix}$	2
			● ² find \overrightarrow{EF}	\bullet^2 $\begin{pmatrix} 2\\1\\3 \end{pmatrix}$	

Notes:

- 1. For candidates who find both \overrightarrow{DE} and \overrightarrow{FE} correctly, award 1/2.
- 2. Accept vectors written horizontally.

Commonly Observed Responses:

(b)	(i)	•³ evaluate $\overrightarrow{\text{ED.EF}}$	•³ 16	1	
	(ii)	•4 evaluate $ \overrightarrow{ED} $	• ⁴ √53	4	
		● ⁵ evaluate EF	• ⁵ √14		
		• substitute into formula for scalar product	•6 $\cos DEF = \frac{16}{\sqrt{53} \times \sqrt{14}}$ or $\sqrt{53} \times \sqrt{14} \times \cos DEF = 16$		
		• ⁷ calculate angle	• ⁷ 54.028° or 0.942 radians		

Question	Generic scheme	Illustrative scheme	Max mark
----------	----------------	---------------------	-------------

3. (b) (continued)

Notes:

- 3. Do not penalise candidates who treat negative signs with a lack of rigour when calculating a magnitude. For example accept $\sqrt{1^2+4^2+6^2}=\sqrt{53}$ or $\sqrt{1^2+4^2+6^2}=\sqrt{53}$ for \bullet^4 . However, do not accept $\sqrt{1^2-4^2+6^2}=\sqrt{53}$ for \bullet^4 .
- 4. 6 is not available to candidates who simply state the formula $\cos \theta = \frac{\overrightarrow{ED}.\overrightarrow{EF}}{|\overrightarrow{ED}||\overrightarrow{EF}|}$.

However, $\cos \theta = \frac{16}{\sqrt{53} \times \sqrt{14}}$ and $\sqrt{53} \times \sqrt{14} \times \cos \theta = 16$ are acceptable for •6.

- 5. Accept correct answers rounded to 54° or 0.9 radians (or 60 gradians).
- 6. Do not penalise the omission or incorrect use of units.
- 7. 7 is only available as a result of using a valid strategy.
- 8. \bullet^7 is only available for a single angle.
- 9. For a correct answer with no working award 0/4.

Commonly Observed Responses:

Candidate A - poor notation

$$\begin{pmatrix} 1 \\ -4 \\ 6 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ -4 \\ 18 \end{pmatrix} = 16$$

Candidate B - insufficient communication

$$\left| \overrightarrow{ED} \right| = \sqrt{53}$$
 $\left| \overrightarrow{EF} \right| = \sqrt{14}$

$$\frac{16}{\sqrt{53} \times \sqrt{14}}$$

$$54.028...^{\circ}$$
 or $0.942...$ radians

Candidate C - BEWARE

$$\left| \overrightarrow{\mathsf{OF}} \right| = \sqrt{14}$$