$$y = \frac{8}{x^3} = 8x^{-3}$$
 $\frac{dy}{dx} = -24x^{-4} = -\frac{24}{x^4}$

When x=2, $m=-\frac{24}{24}=-\frac{24}{16}=-\frac{3}{2}$ When = 4 = 2, $y = \frac{8}{3} = \frac{8}{8} = 1$

$$y=2$$
, $y=\frac{8}{2^3}=$.

2(y-1) = -3(x-2)

2y-2 = -3x + 6

2y = -3x + 8 (or equivalent)

Question		n	Generic scheme	Illustrative scheme	Max mark
2.			•¹ find <i>y</i> -coordinate	•1 1	5
			•² write in differentiable form	• 2 $8x^{-3}$	
			•³ differentiate	$\bullet^3 8 \times (-3) x^{-4}$	
			• ⁴ find gradient of tangent	\bullet^4 $-\frac{3}{2}$	
			• ⁵ determine equation of tangent	$\bullet^5 3x + 2y = 8$	

Notes:

- 1. Only \bullet^1 and \bullet^2 are available to candidates who integrate. However, see Candidates E and F.
- 2. $8 \times (-3) x^{-4}$ without previous working gains \bullet^2 and \bullet^3 .
- 3. \bullet^3 is only available for differentiating a negative power. \bullet^4 and \bullet^5 are still available.
- 4. 4 is not available for $y = -\frac{3}{2}$. However, where $-\frac{3}{2}$ is then used as the gradient of the straight line, 4 may be awarded see Candidates A, B and C.
- 5. is only available where candidates attempt to find the gradient by substituting into their derivative.
- 6. 5 is not available as a consequence of using a perpendicular gradient.
- 7. Where x = 2 has not been used to determine the y-coordinate, \bullet^5 is not available.

Commonly Observed Responses:

Candidate A - incorrect notation		Candidate B - use of values in equation	
y = 1 $-$	•¹ ✓ - BoD	y=1	•¹ ✓ - BoD
$y = 8x^{-3}$	• ² ✓	$y = 8x^{-3}$	• ² ✓
$y = 8x^{-3}$ $y = -24x^{-4}$	•³ ✓	$\frac{dy}{dx} = 8 \times (-3) x^{-4}$	•³ ✓
$y = -\frac{3}{2}$ ——	•⁴ ✓ - BoD	$\frac{dx}{dy} = -\frac{3}{3}$	•4 ✓
3x + 2y = 8	•⁵ ✓	dx = 2	
		$y=-\frac{1}{2}$	
		3x + 2y = 8	•⁵ ✓

Candidate C - incorrect notation

$$y = 1$$

$$y = 8x^{-3}$$

$$\frac{dy}{dx} = 8 \times (-3)x^{-4}$$

$$y = -\frac{3}{2}$$

Evidence for • 4 would need to appear in the equation of the line

Question	Generic scheme	Illustrative scheme		lax ark	
2. (continued)					
Candidate E - integrating in part Candidate F - appearance of $+c$					
y = 1	•¹ •	=1	•¹ ✓		
$y = 8x^{-3}$	•² ✓	$=8x^{-3}$	• ² ✓		
$y = 1$ $y = 8x^{-3}$ $\frac{dy}{dx} = -24x^{-2}$	• ³ x	$= 8x^{-3}$ $\frac{y}{x} = -24x^{-4} + c$	•³ × • ⁴ s	ĸ	
$\frac{dy}{dx} = -6$	• ⁴ √ ₁	ı	• ⁵ x		
y = -6x + 13	● ⁵ ✓ ₁				