(2) $$2 \sin 2x - \sin^2 x = 0$$ $2(2 \sin x \cos x) - \sin^2 x = 0$ $4 \sin x \cos x - \sin^2 x = 0$ $(\sin x)(4 \cos x - \sin x) = 0$ $\sin x = 0$ or $4 \cos x - \sin x = 0$ $\sin x = 4 \cos x$ $\frac{\sin x}{\cos x} = 4$ $\tan x = 4$ Related and $\arg k = \frac{\tan^2 4}{\cos^2 x}$ $x = 76.0^\circ$, $180 + 76.0^\circ$ $x = 76.0^\circ$, 256.0° | Question | | 1 | Generic scheme | Illustrative scheme | Max
mark | |----------|--|---|--|---|-------------| | 12. | | | •¹ substitute appropriate double angle formula | $\bullet^1 2(2\sin x^\circ \cos x^\circ) - \sin^2 x^\circ (=0)$ | 5 | | | | | •² factorise | $\bullet^2 \sin x^\circ (4\cos x^\circ - \sin x^\circ) = 0$ | | | | | | • 3 solve for $\tan x^{\circ}$ | • $\tan x^{\circ} = 4$ (since $x = 90$, 270 are not solutions) | | | | | | •4 solve $\tan x^{\circ} = 4$ | • ⁴ • ⁵ • ⁴ 76, 256 | | | | | | •5 solve $\sin x^{\circ} = 0$ | • ⁵ 0, 180 | | ## Notes: - 1. is still available to candidates who correctly substitute for $\sin^2 x$ in addition to $\sin 2x$. - 2. Substituting $2\sin A\cos A$ for $\sin 2x^{\circ}$ at the \bullet^1 stage should be treated as bad form provided the equation is written in terms of x at the \bullet^2 stage. Otherwise, \bullet^1 is not available. - 3. '= 0' must appear by the \bullet^2 stage for \bullet^2 to be awarded. - 4. Award \bullet^2 for 'S(4C-S)=0' only where $\sin x^\circ=0$ and $4\cos x^\circ-\sin x^\circ=0$ appear. - 5. Do not penalise the omission of degree signs. - 6. At \bullet^3 stage, candidates are not required to check that 90 and 270 are not solutions before dividing by $\cos x^\circ$. Where candidates have divided by $\sin x$ at the \bullet^2 stage without considering $\sin x = 0$, \bullet^3 and \bullet^4 are still available. - 7. At \bullet^3 stage, candidates may use the wave function and arrive at $\sqrt{17}\cos(x+14)^\circ=0$, or an equivalent wave form, instead of $\tan x^\circ=4$. - 8. 4 is only available where the working at the 3 stage is of equivalent difficulty to reaching $\tan x^{\circ} = 4$. - 9. 5 is not available where $\sin x = 0$ comes from an invalid strategy. - 10. For candidates who work only in radians, •⁵ is not available. - 11. \bullet^4 and \bullet^5 may be awarded vertically. See also Candidate B. - 12. Do not penalise solutions outwith $0 \le x < 360$. | Commonly Observed Responses: | | | | | | | | | |---|---------------------------------------|--|--------------|-----------|--|--|--|--| | Candidate A - working in radians : $\tan x^{\circ} = 4$ 1.326, 4.468 $0, \pi$ | •¹ ✓ •² ✓
•³ ✓
•⁴ ✓ ₁
•5 ✓ 2 | Candidate B - partial solutions
$2(2 \sin x^{\circ} \cos x^{\circ}) - \sin^{2} x^{\circ} = 0$ $\sin x^{\circ} (4 \cos x^{\circ} - \sin x^{\circ}) = 0$ $\sin x^{\circ} = 0$ $x = 180$ $\tan x^{\circ} = 4$ $x = 76$ $\bullet^{5} \land$ | •² ✓
•³ ✓ | •¹ √ •⁴ √ | | | | |