$k = \frac{1}{10} \ln \left(\frac{125}{6.8} \right)$ = 0.29113... ≈ 0.291

elok = 125

10k = ln (125)

Question		n	Generic scheme	Illustrative scheme	Max mark
11.	(a)		•¹ state number of vehicles	•¹ 6.8 million	1

Notes:

1. Accept 6.8 or N = 6.8 million for \bullet^1 .

Commonly Observed Responses:

(b)	$ullet^2$ substitute for N and t	• 2 125 = $6.8e^{10k}$ stated or implied by • 3	4
	•³ process equation	$\bullet^3 \ \frac{125}{6.8} = e^{10k}$	
	•4 express in logarithmic form	$\bullet^4 \log_e \left(\frac{125}{6.8}\right) = 10k$	
	\bullet^5 solve for k	• ⁵ 0.2911	

Notes:

- 2. Accept answers which round to 0.29.
- 3. Do not penalise rounding or transcription errors (which are correct to 2 significant figures) in intermediate calculations.
- 4. \bullet^3 may be assumed by \bullet^4 .
- 5. Any base may be used at 4 stage. See Candidate A.
- 6. At 4 all exponentials must be processed.
- 7. Accept $\log_e \frac{125}{6.8} = 10k \log_e e$ for •4.
- 8. The calculation at •5 must follow from the valid use of exponentials and logarithms at •3 and •4.
- 9. For candidates with no working, or who adopt an iterative approach to arrive at k = 0.29, award 1/4. However, if, in the iterations N is calculated for k = 0.295 and k = 0.285, then award 4/4.

Commonly Observed Responses:

Candidate A - use of alternative by $125 = 6.8e^{10k}$ $\frac{125}{6.8} = e^{10k}$ $\log_{10} \left(\frac{125}{6.8}\right) = 10k \log_{10} e$ $k = 0.2911$	• 2 ✓ • 3 ✓ • 4 ✓ • 5 ✓	Candidate B - missing lines $125 = 6.8e^{10k}$ $k = 0.2911$	of working •² ✓ •³ ^ •⁴ ^ •⁵ ✓
Candidate C - errors in substitution $125000000 = 6.8e^{10k}$ $\frac{125000000}{6.8} = e^{10k}$ $16.726 = 10k$ $k = 1.6726$	•° x •° √1		