$$(x+6)^{2} + (y-0)^{2} = (2\sqrt{10})^{2}$$

$$(x+6)^{2} + y^{2} = 40$$
When $t=0$, $N=6.8e^{\circ} = 6.8$
Number of vehicles = 6.8 million (or 6.800000)
$$125 = 6.8e^{i0k}$$

$$e^{i0k} = \frac{125}{1.6}$$

(10) (a)

(b)

(b)

2g = 18 2f = -2

r= \(\frac{2}{9} + \frac{2}{-c} \)

= \(9^2 + (-1)^2 - (-8) \)

 $=\sqrt{81+1+8}$

= 190

= J9 X10

 $= 3\sqrt{10}$

 $=\sqrt{3^2+1^2}$

= 510

d= 1, - 12

VIO = 3/10 - 12

lok = ln (125 6.8)

K= 10 ln (125)

= 0.29113... \approx 0.291

f=-1

Let d = distance between centres.

d= \((-9-(-6))^2 + (1-0)^2

Cerde (-9,1)

Q	Question		Generic scheme	Illustrative scheme	Max mark
10.	(a)		•¹ state centre	•¹ (-9,1)	2
			•² calculate radius	• $\sqrt{90}$ or $3\sqrt{10}$ or 9.48	

Notes:

- 1. Accept x = -9, y = 1 for •1.
- 2. Do not accept 'g = -9, f = 1' or '-9,1' for \bullet^{1} .
- 3. Do not penalise candidates who treat negative signs with a lack of rigour when calculating the radius. For example accept $\sqrt{9^2 + -1^2 + 8} = \sqrt{90}$ or $\sqrt{9^2 + 1^2 + 8} = \sqrt{90}$ or $\sqrt{-9^2 + 1^2 + 8} = \sqrt{90}$ for \bullet^2 . However, do not accept $\sqrt{9^2 1^2 + 8} = \sqrt{90}$ for \bullet^2 .

Commonly Observed Responses:									
	(b)		• determine the distance betwee the centres and subtract to find numerical expression for the radius of C ₂	3 ' '	2				
			• ⁴ determine equation of C ₂	$\bullet^4 (x+6)^2 + y^2 = 40$					

Notes:

- 4. Do not penalise the use of decimals.
- 5. The distance between the centres, and the radius of C_2 must be consistent with the sizes of the circles in the original diagram ($d < r_{C_2} < r_{C_1}$).
- 6. Where a candidate uses an incorrect radius without supporting working, \bullet^4 is not available.

Commonly Observed Responses:

Candidate A - follow-through marking

Part (a)

$$r = \sqrt{74}$$

•² ×

Part (b)

$$d = \sqrt{10}$$

radius =
$$\sqrt{74} - \sqrt{10}$$

 $(x+6)^2 + y^2 = 5.44...^2$

$$(x+6)^2 + y^2 = 5.44...^2$$

 $(x+6)^2 + y^2 = 29.59...$ (or $84 - 4\sqrt{185}$)

Candidate B - using line through centres

Equation of radius:
$$3y = -x - 6$$

$$(-3y-6)^2 + y^2 + 18(-3y-6) - 2y - 8 = 0$$

$$10y^2 - 20y - 80 = 0$$

$$y = 4 \qquad y = -2$$

$$x = -18 \qquad x = 0$$

Radius = distance between
$$(-6,0)$$
 and $(0,-2)$

Radius =
$$\sqrt{40}$$

$$\left(x+6\right)^2+y^2=40$$