(b)
$$M_{10} = \frac{-6-4}{-1-4} = \frac{-10}{-5} = 2$$
 $y - 4 = 2(x - 4)$
 $y = 2x - 8$
 $y = 2x - 4$

(b) $M_{10} = \frac{0 - (-6)}{11 - (-1)} = \frac{6}{12} = \frac{1}{2}$
 $y - 0 = -2(x - 11)$

(c) Point of intersection:
$$2x-4=-2x+22$$

$$4x = 26$$

$$x = \frac{26}{4} = \frac{13}{2}$$
When $x = \frac{13}{2}$, $y = 2(\frac{13}{2}) - 4 = 13 - 4 = 9$

 $(\frac{13}{2}, 9)$

Question			Generic scheme	Illustrative scheme	Max mark
1.	(a)		•¹ determine midpoint of AC	•1 (4,4)	3
			•² determine gradient of median	• 2 or $\frac{10}{5}$	
			•³ find equation of median	$\bullet^3 y = 2x - 4$	

Notes:

- 1. \bullet^2 is only available to candidates who use a midpoint to find a gradient.
- 2. \bullet ³ is only available as a consequence of using a 'midpoint' of AC and the point B
- 3. At \bullet ³ accept any arrangement of a candidate's equation where the constant terms have been simplified.
- 4. 3 is not available as a consequence of using a perpendicular gradient.

Commonly Observed Responses:

Commonly Observed Responses.								
Candidate A - p Midpoint = (4,4)	erpendicular bisector of AC	Candidate B - altitude through B						
$m_{\text{AC}} = -\frac{4}{7} \Rightarrow m_{\perp}$		$m_{AC} = -\frac{4}{7}$	● ¹ ^					
4y = 7x - 12	• ³ √ ₂	$m_{\perp} = \frac{7}{4}$	•² x					
		4y = 7x - 17	•³ √ 2					
For other perpe	ndicular bisectors award 0/3							
Candidate C - m midpoint BC = (nedian through A [5,-3]	Candidate D - median through C midpoint AB $(-2,1)$		•¹ x				
$m_{AM} = -\frac{11}{8}$	• ² ✓ ₁	$m_{\rm CM} = -\frac{1}{13}$	• ² ✓ ₁					
8y = -11x + 31	•³ ✓ ₂	13y = -x + 11	•³ √ 2					
(b)	• ⁴ determine gradient of BC	•4 6/12		3				
	•5 determine gradient of L	$\bullet^5 - \frac{12}{6}$						
	•6 find equation of L	•6 $y = -2x + 22$						

Notes:

- 5. 6 is only available as a consequence of using a perpendicular gradient and C.
- 6. At ●6 accept any arrangement of a candidate's equation where the constant terms have been simplified.

Commonly Observed Responses:

Candidate E - altitude through C $m_{\rm AB} = -7$

$$m_{\perp} = \frac{1}{7}$$

$$y = \frac{1}{7}(x - 11)$$

$$\bullet^{5} \checkmark_{1}$$

Q	Question		Generic scheme	Illustrative scheme	Max mark
1.	(c)		• ⁷ determine <i>x</i> -coordinate	• 7 6.5 or $\frac{13}{2}$	2
			• ⁸ determine <i>y</i> -coordinate	•8 9	

Notes:

7. For
$$\left(\frac{26}{4}, 9\right)$$
 award 1/2.

Commonly Observed Responses:

Candidate F - rounding decimals (a) 4y = 5x - 19

(a)
$$4v = 5x - 19$$

(b)
$$y = -2x + 22$$

(c)
$$x = \frac{107}{13} = 8.2$$

$$y = 5.6$$