$$\log_a 5 + \log_a 80 - 2\log_a 10 = \log_a 5 + \log_a 80 - \log_a 10$$

$$= \log_a \frac{5 \times 80}{100}$$

$$= \log_a \frac{400}{100}$$

= loga 4

Question		n	Generic scheme	Illustrative scheme	Max mark
9.			Method 1 •1 apply $\log_a x + \log_a y = \log_a xy$	Method 1 • $\log_a (5 \times 80)$ stated or implied by • 3	3
			• apply $m \log_a x = \log_a x^m$	• 2 $-\log_a 10^2$ stated or implied by • 3	
			•³ apply $\log_a x - \log_a y = \log_a \frac{x}{y}$ and express in required form	\bullet ³ $\log_a 4$	
			Method 2 • 1 apply $m \log_a x = \log_a x^m$	Method 2 • 1 $-\log_{a} 10^{2}$ stated or implied by • 3 • 2 $+\log_{a} \left(\frac{80}{10^{2}}\right)$ stated or implied by • 3	
			• apply $\log_a x + \log_a y = \log_a xy$ and express in required form	•³ log _a 4	

Notes:

- 1. Where an error at the \bullet^1 or \bullet^2 stage leads to a non-integer value for k, \bullet^3 is still available.
- 2. Each line of working must be equivalent to the line above within a valid strategy. See commonly observed responses.
- 3. Where candidates apply the laws of logarithms in the incorrect order see Candidates A and B.4. Where candidates do not consider the '2', a maximum of 1/3 is available. See Candidate C.
- 5. Do not penalise the omission of the base of the logarithm.
- 6. Correct answer with no working, award 3/3.
- 7. Where candidates form an invalid equation, \bullet^1 and \bullet^2 may only be awarded for working with $\log_a 5 + \log_a 80 - 2\log_a 10$ on one side of the equation; \bullet^3 is not available.

Commonly Observed Responses:				
Candidate A	Candidate B			
$\log_a 5 + 2\log_a \left(\frac{80}{10}\right)$	$\log_a 400 - 2\log_a 10$			
	$2\log_a\left(\frac{400}{10}\right)$			
$2\log_a\left(\frac{5\times80}{10}\right)$	$\left(\begin{array}{c} 2105a \\ 10 \end{array}\right)$			
$\left \begin{array}{c} 2\log_a \end{array}\right \left(\begin{array}{c} 10 \end{array}\right)$	$\log_a(40)^2$			
$\log_a(40)^2$	$\log_a 1600$			
$\log_a 1600$	Award 2/3			
Award 1/3				
Candidate C - ignoring the 2				
$\log_a 5 + \log_a 80 - 2\log_a 10$				
$\log_a 5 + \log_a \frac{80}{10}$				
$\log_a 40$				
Award 1/3				