(7) Subs
$$y=2x$$
 into $x^2+y^2-14x-8y+45=0$

$$x^2+(2x)^2-14x-8(2x)+45=0$$

$$5x^2-14x-16x+45=0$$

$$5x^2-30x+45=0$$

$$x^2-6x+9=0$$

$$(x-3)^2=0$$

$$x=3$$

$$y=2x^3=6$$
(3,6)

Question		n	Generic scheme	Illustrative scheme	Max mark
7.			Method 1	Method 1	4
			\bullet^1 substitute for y		
			•² write in standard quadratic form		
			•³ determine <i>x</i> -coordinate	•3 3	
			• ⁴ determine <i>y</i> -coordinate	•4 6	
			Method 2	Method 2	
			\bullet^1 substitute for x		
			•² write in standard quadratic form		
			•³ determine <i>y</i> -coordinate	•³ 6	
			• 4 determine <i>x</i> -coordinate	•4 3	
			Method 3	Method 3	
			•¹ use centre and perpendicular gradient to determine equation of radius through point of contact	• $x + 2y = 15$	
			\bullet^2 substitute for y	$e^2 x + 2(2x) = 15$	
			•³ determine <i>x</i> -coordinate	• 3 3	
			• ⁴ determine <i>y</i> -coordinate	•4 6	

Notes:

- 1. In Methods 1 and 2, treat an absence of brackets at the •¹ stage as bad form only if corrected on the next line of working.
- 2. In Methods 1 and 2, \bullet^1 is only available if the '=0' appears by the \bullet^2 stage.
- 3. In Methods 1 and 2, if a candidate arrives at an equation which is not a quadratic 3 and 4 are unavailable.
- 4. Where the quadratic obtained at •² in Methods 1 and 2, does not have repeated roots •³ and •⁴ are not available.
- 5. In Method 3 accept $y-4=-\frac{1}{2}(x-7)$, $-\frac{1}{2}=\frac{4-y}{7-x}$ or equivalent for •¹.
- 6. In Method 3 \bullet^2 , \bullet^3 and \bullet^4 are unavailable to candidates who find the equation of any other line.
- 7. For (3,6) without working, award 0/4.
- 8. For answer of (3,6) verified in both equations, or (3,6) generated by the linear equation and verified in the equation of the circle, award 4/4.

Question	Generic scheme		Illustrative scheme	Max mark						
7. (continued)										
Commonly Observed Responses:										
Candidate A - su the circle	ubstitution into the equation of									
$\begin{cases} x = 3 \\ (3)^2 + y^2 - 14(3) \end{cases}$	•³ ✓ • 8 v + 45 = 0									
$y^2 - 8y + 12 = 0$										
(y-2)(y-6) = 0 $y=6$	0 •⁴ ✓									
	to explicitly consider $y = 2$									
However, (3,6) and (3,2)	• ⁴ ×									