$$u_2 = \frac{1}{5}u_1 + 12$$

$$= \frac{1}{5}(20) + 12$$

$$= 4 + 12$$

limit = $\frac{12}{1-\frac{1}{5}} = \frac{12}{4/5} = 12 \times \frac{5}{4} = 5 \times 3 = 15$

u = 20

-1<=<1

Question			Generic scheme	Illustrative scheme	Max mark
2.	(a)		•¹ calculate second term	•¹ 16	1

Notes:

1. Candidates who use $u_0 = 20$ and then calculate $u_1 = 16$ gain •1.

Commonly Observed Responses:

(b)	(i)	•² communicate condition for limit to exist	• a limit exists as $-1 < \frac{1}{5} < 1$	1
	(ii)	•³ know how to calculate a limit	• $\frac{12}{1-\frac{1}{5}}$ or $L = \frac{1}{5}L + 12$	2
		• ⁴ calculate limit	• ⁴ 15	

Notes

2. For •² accept:

any of '-1< $\frac{1}{5}$ <1' or ' $\left|\frac{1}{5}\right|$ <1' or '0< $\frac{1}{5}$ <1' with no further comment;

or statements such as:

 $\frac{1}{5}$ lies between -1 and 1' or $\frac{1}{5}$ is a proper fraction'.

3. •²is not available for:

$$-1 \le \frac{1}{5} \le 1$$
 or $\frac{1}{5} < 1$

or statements such as:

'It is between -1 and 1.' or ' $\frac{1}{5}$ is a fraction'.

4. Candidates who state -1 < a < 1 can only gain \bullet^2 if it is explicitly stated that $a = \frac{1}{5}$.

5. Do not accept $L = \frac{b}{1-a}$ with no further working for •3.

6. • 3 and • 4 are not available to candidates who conjecture L = 15 following the calculation of further terms in the sequence.

7. For L = 15 with no working award 0/2.

8. • 4 is only available where • 3 has been awarded.

Commonly Observed Responses:

Candidate A $a = \frac{1}{5}$ -1 < a < 1 so a limit existsCandidate B - no explicit reference to a $u_{n+1} = au_n + b$ $u_{n+1} = \frac{1}{5}u_n + 12$ -1 < a < 1 so a limit exists $\bullet^2 \checkmark$