$$m_{PQ} = \frac{10-2}{4-6} = \frac{8}{-2} = -4$$

$$m_{\perp} = \frac{1}{4}$$

$$y-6 = \frac{1}{4}(x-5)$$

$$4(y-6) = x-5$$

$$4y-24 = x-5$$

$$4y = x+19$$
(b) Centre of circle has x-coordinate directly above the midpoint of QR.
$$x = \frac{6+12}{2} = 9$$

$$x = \frac{6+12}{2} = 9$$

$$4y = x+19$$

$$= 9+19$$

$$= 9+19$$

$$= 28$$

$$y = 7$$
Cective (9.7)
$$(x-9)^{2} + (y-7)^{2} = 34$$

Midpoint of PQ = $(\frac{4+6}{2}, \frac{10+2}{2}) = (5,6)$

Cestre (9,7)

Question			Generic scheme	Illustrative scheme	Max mark
13.	(a)		•¹ find midpoint of PQ	•¹ (5,6)	4
			•² find gradient of PQ	e^2 -4 or $-\frac{8}{2}$	
			 find perpendicular gradient find equation of perpendicular bisector 	$ \bullet^3 \frac{1}{4} $ $ \bullet^4 4y = x + 19 $	

Notes:

- 1. 4 is only available as a consequence of using a perpendicular gradient and a mid-point.
- 2. The gradient of the perpendicular bisector must appear in fully simplified form at •³ or •⁴ stage for •³ to be awarded.
- 3. At \bullet^4 accept 4y-x=19, 4y-x-19=0, or any other rearrangement of the equation where the constant terms have been simplified.

Commonly Observed Responses:

(b)	• 5 identify x -coordinate of centre	• ⁵ 9	4
	• find y -coordinate of centre	•6 7	
	• ⁷ find radius	• ⁷ √34	
	• ⁸ state equation of circle	$ \bullet ^8 (x-9)^2 + (y-7)^2 = 34$	

Notes:

- 4. Do not accept "centre = (9,2)" as evidence of \bullet^5 .
- 5. Where candidates use PQ, QR or PR as the diameter of the circle no marks are available.
- 6. ⁷ and ⁸ are only available as a consequence of using the point of intersection of two perpendicular bisectors and a point on the circumference of the circle.
- 7. Accept $r^2 = 34$ for •⁷.
- 8. $(x-9)^2 + (y-7)^2 = (\sqrt{34})^2$ does not gain •8.

Commonly Observed Responses:

Candidate A - horizontal line through midpoint of PQ

Centre = (9,6)Radius = 5

Equation: $(x-9)^2 + (y-6)^2 = 25$ • 8 **x**Candidate B - perpendicular bisector of PR

Perpendicular bisector of PR: y = x-2Centre = (9,7):

[END OF MARKING INSTRUCTIONS]