(a) $$1 \ | 2 \ 3 \ -4 \ -3 \ 2$$ Remainder = 0 $1 \ | 2 \ 5 \ | -2$ So $(x-1)$ is a factor. $2 \ 5 \ | -2 \ | 2$ So $(x-1)$ is a factor. So $2x^4 + 3x^3 - 4x^2 - 3x + 2 = (x-1)(2x^3 + 5x^2 + x - 2)$ (b) Try $x = 1$. $2 + 5 + 1 - 2 \neq 0$ (10) (a) Renainder = 0 $$(x-1)(x+1)(2x^2+3x-2)$$ = (x-1)(x+1)(x+2)(2x-1) | Question | | | Generic scheme | Illustrative scheme | Max
mark | |----------|-----|--|--|---|-------------| | 10. | (a) | | use 1 in synthetic division or in evaluation of quartic complete division/evaluation and interpret result | or $2 \times (1)^4 + 3 \times (1)^3 - 4 \times (1)^2$ $-3 \times (1) + 2$ $1 2 3 -4 -3 2$ $2 5 1 -2$ $2 5 1 -2 0$ | 2 | | | | | | 2 5 1 -2 0
Remainder = 0 : $(x-1)$ is a factor
or
f(1) = 0 : $(x-1)$ is a factor | | ### Notes: - 1. Communication at •2 must be consistent with working at that stage i.e. a candidate's working must arrive legitimately at 0 before \bullet^2 can be awarded. - 2. Accept any of the following for \bullet^2 : - 'f(1) = 0 so (x-1) is a factor' - 'since remainder = 0, it is a factor' - the '0' from any method linked to the word 'factor' by 'so', 'hence', \therefore , \rightarrow , \Rightarrow etc. - 3. Do not accept any of the following for \bullet^2 : - double underlining the '0' or boxing the '0' without comment - 'x = 1 is a factor', '... is a root' - the word 'factor' only, with no link. ### **Commonly Observed Responses:** #### Candidate A - grid method $2x^3$ $5x^3$ $2x^4$ \boldsymbol{x} $-2x^{3}$ $2x^3$ $5x^2$ $x^{\overline{2}}$ $2x^4$ $5x^3$ $-2x^{3}$ $-5x^{2}$ -x2 'with no remainder' $\therefore (x-1)$ is a factor \boldsymbol{x} •² ✓ -2x # Candidate B - grid method $$\therefore (x-1)(2x^3 + 5x^2 + x - 2) = 2x^4 + 3x^3 - 4x^2 - 3x + 2$$ \therefore (x-1) is a factor | Question | | n | Generic scheme | Illustrative scheme | | |----------|-----|---|--|---|---| | 10. | (b) | | •³ identify cubic and attempt to factorise | •³ eg -1 2 5 1 -2 -2 3 2 or -2 2 5 1 -2 -4 -2 2 1 | 4 | | | | | • ⁴ find second factor | •4 eg -1 | | | | | | • identify quadratic • complete factorisation | •5 $2x^2 + 3x - 2$ or $2x^2 + x - 1$
•6 $(x-1)(x+1)(2x-1)(x+2)$
stated explicitly | | ## Notes: - 4. Ignore the appearance of = 0. - 5. Candidates who arrive at $(x-1)(x+1)(2x^2+3x-2)$ or $(x-1)(x+2)(2x^2+x-1)$ by using algebraic long division or by inspection, gain \bullet^3 , \bullet^4 and \bullet^5 . - 6. Where a candidate only identifies additional factors from a quartic, only 4 is available. - 7. 3 and 4 may be awarded for applications of synthetic division even when previous trials contain errors. 5 and 6 are available. Question # Generic scheme ### Illustrative scheme Max mark ### 10. (b) (continued) # **Commonly Observed Responses:** # Candidate C - grid method (a) | | $2x^3$ | $5x^2$ | X | -2 | |----|---------|-----------|-------|--------------------| | x | $2x^4$ | $5x^3$ | x^2 | -2 <i>x</i> | | -1 | $-2x^3$ | $-5x^{2}$ | -x | 2 | (b) dad for avidence of the cubic • 3 is awarded for evidence of the cubic expression (which may be in the grid from part (a)) AND the terms in the diagonal boxes summing to the second and third terms in the cubic respectively. $$2x^2 + 3x - 2$$ $$(x-1)(x+1)(2x-1)(x+2)$$ ## Candidate D - grid method (a) | ` ′ | $2x^3$ | $5x^2$ | х | -2 | |------------------|-----------|-----------|-------|--------------------| | \boldsymbol{x} | $2x^4$ | $5x^3$ | x^2 | -2 <i>x</i> | | -1 | $-2x^{3}$ | $-5x^{2}$ | -x | 2 | (b) | | $2x^2$ | ••• | | |-----|--------|--------|--| | x | $2x^3$ | | | | ••• | \ | سسيناس | | •³ is awarded for evidence of the cubic expression (which may be in the grid from part (a)) AND the terms in the diagonal boxes summing to the second and third terms in the cubic respectively. $$2x^2 + x - 1$$ $$(x-1)(x+2)(x+1)(2x-1)$$ •⁶ ✓ ### Candidate E $\left(x-\frac{1}{2}\right)\left(2x^2+6x+4\right)$ •⁵ \checkmark $$(2x-1)(x^2+3x+2)$$ (x-1)(2x-1)(x+1)(x+2) 3 / 4 / Candidate F $$(x-\frac{1}{2})(2x^2+6x+4)$$ $$(x-\frac{1}{2})(2x+2)(x+2)$$ $$(x-1)(x-\frac{1}{2})(2x+2)(x+2)$$ •³ **✓** •⁴ •