(a)
$$1 \ | 2 \ 3 \ -4 \ -3 \ 2$$
 Remainder = 0
 $1 \ | 2 \ 5 \ | -2$ So $(x-1)$ is a factor.
 $2 \ 5 \ | -2 \ | 2$ So $(x-1)$ is a factor.
So $2x^4 + 3x^3 - 4x^2 - 3x + 2 = (x-1)(2x^3 + 5x^2 + x - 2)$
(b) Try $x = 1$. $2 + 5 + 1 - 2 \neq 0$

(10) (a)

Renainder = 0

$$(x-1)(x+1)(2x^2+3x-2)$$

= (x-1)(x+1)(x+2)(2x-1)

Question			Generic scheme	Illustrative scheme	Max mark
10.	(a)		 use 1 in synthetic division or in evaluation of quartic complete division/evaluation and interpret result 	or $2 \times (1)^4 + 3 \times (1)^3 - 4 \times (1)^2$ $-3 \times (1) + 2$ $1 2 3 -4 -3 2$ $2 5 1 -2$ $2 5 1 -2 0$	2
				2 5 1 -2 0 Remainder = 0 : $(x-1)$ is a factor or f(1) = 0 : $(x-1)$ is a factor	

Notes:

- 1. Communication at •2 must be consistent with working at that stage i.e. a candidate's working must arrive legitimately at 0 before \bullet^2 can be awarded.
- 2. Accept any of the following for \bullet^2 :
 - 'f(1) = 0 so (x-1) is a factor'
 - 'since remainder = 0, it is a factor'
 - the '0' from any method linked to the word 'factor' by 'so', 'hence', \therefore , \rightarrow , \Rightarrow etc.
- 3. Do not accept any of the following for \bullet^2 :
 - double underlining the '0' or boxing the '0' without comment
 - 'x = 1 is a factor', '... is a root'
 - the word 'factor' only, with no link.

Commonly Observed Responses:

Candidate A - grid method $2x^3$ $5x^3$ $2x^4$ \boldsymbol{x} $-2x^{3}$ $2x^3$ $5x^2$ $x^{\overline{2}}$ $2x^4$ $5x^3$

 $-2x^{3}$ $-5x^{2}$ -x2 'with no remainder'

 $\therefore (x-1)$ is a factor

 \boldsymbol{x}

•² ✓

-2x

Candidate B - grid method

$$\therefore (x-1)(2x^3 + 5x^2 + x - 2) = 2x^4 + 3x^3 - 4x^2 - 3x + 2$$

\therefore (x-1) is a factor

Question		n	Generic scheme	Illustrative scheme	
10.	(b)		•³ identify cubic and attempt to factorise	•³ eg -1 2 5 1 -2 -2 3 2 or -2 2 5 1 -2 -4 -2 2 1	4
			• ⁴ find second factor	•4 eg -1	
			 • identify quadratic • complete factorisation 	•5 $2x^2 + 3x - 2$ or $2x^2 + x - 1$ •6 $(x-1)(x+1)(2x-1)(x+2)$ stated explicitly	

Notes:

- 4. Ignore the appearance of = 0.
- 5. Candidates who arrive at $(x-1)(x+1)(2x^2+3x-2)$ or $(x-1)(x+2)(2x^2+x-1)$ by using algebraic long division or by inspection, gain \bullet^3 , \bullet^4 and \bullet^5 .
- 6. Where a candidate only identifies additional factors from a quartic, only 4 is available.
- 7. 3 and 4 may be awarded for applications of synthetic division even when previous trials contain errors. 5 and 6 are available.

Question

Generic scheme

Illustrative scheme

Max mark

10. (b) (continued)

Commonly Observed Responses:

Candidate C - grid method

(a)

	$2x^3$	$5x^2$	X	-2
x	$2x^4$	$5x^3$	x^2	-2 <i>x</i>
-1	$-2x^3$	$-5x^{2}$	-x	2

(b)

dad for avidence of the cubic

• 3 is awarded for evidence of the cubic expression (which may be in the grid from part (a)) AND the terms in the diagonal boxes summing to the second and third terms in the cubic respectively.

$$2x^2 + 3x - 2$$

$$(x-1)(x+1)(2x-1)(x+2)$$

Candidate D - grid method

(a)

` ′	$2x^3$	$5x^2$	х	-2
\boldsymbol{x}	$2x^4$	$5x^3$	x^2	-2 <i>x</i>
-1	$-2x^{3}$	$-5x^{2}$	-x	2

(b)

	$2x^2$	•••	
x	$2x^3$		
•••	\	سسيناس	

•³ is awarded for evidence of the cubic expression (which may be in the grid from part (a)) AND the terms in the diagonal boxes summing to the second and third terms in the cubic respectively.

$$2x^2 + x - 1$$

$$(x-1)(x+2)(x+1)(2x-1)$$

•⁶ ✓

Candidate E

 $\left(x-\frac{1}{2}\right)\left(2x^2+6x+4\right)$ •⁵ \checkmark

$$(2x-1)(x^2+3x+2)$$

(x-1)(2x-1)(x+1)(x+2)

3 / 4 /

Candidate F

$$(x-\frac{1}{2})(2x^2+6x+4)$$

$$(x-\frac{1}{2})(2x+2)(x+2)$$

$$(x-1)(x-\frac{1}{2})(2x+2)(x+2)$$

•³ **✓** •⁴ •