9.(a)
$$k \sin(x + a) = k \sin c \cos a + k \cos x \sin a$$
 $= k \cos x \sin x + k \cos x \sin x$
 $= k \cos x \sin x + k \cos x \sin x$
 $\Rightarrow k \cos x = 3$
 $\Rightarrow k \cos x = 3$

Question		on	Generic scheme	Illustrative scheme	Max mark
9.	(a)		•¹ use compound angle formula	• $k \sin x^{\circ} \cos a^{\circ} + k \cos x^{\circ} \sin a^{\circ}$ stated explicitly	4
			•² compare coefficients	• $k \cos a^{\circ} = -3, k \sin a^{\circ} = 7$ stated explicitly	
			\bullet^3 process for k	•³ √58	
			• process for <i>a</i> and express in required form	•4 $\sqrt{58}\sin(x+113.19)^{\circ}$.	

Notes:

- 1. Do not penalise the omission of degree symbols in this question.
- 2. Accept $k(\sin x^{\circ}\cos a^{\circ} + \cos x^{\circ}\sin a^{\circ})$ at \bullet^{1} .
- 3. Treat $k \sin x^{\circ} \cos a^{\circ} + \cos x^{\circ} \sin a^{\circ}$ as bad form only if the equations at the \bullet^2 stage both contain k.
- 4. $\sqrt{58} \sin x^{\circ} \cos a^{\circ} + \sqrt{58} \cos x^{\circ} \sin a^{\circ}$ or $\sqrt{58} \left(\sin x^{\circ} \cos a^{\circ} + \cos x^{\circ} \sin a^{\circ} \right)$ are acceptable for \bullet^{1} and \bullet^{3}
- 5. •² is not available for $k \cos x^\circ = -3$ and $k \sin x^\circ = 7$, however •⁴ may still be gained see Candidate E.
- 6. 3 is only available for a single value of k, k > 0.
- 7. \bullet^4 is not available for a value of a given in radians.
- 8. Accept values of a which round to 113.
- 9. Candidates may use any form of the wave function for \bullet^1 , \bullet^2 and \bullet^3 . However, \bullet^4 is only available if the wave is interpreted in the form $k \sin(x+a)^{\circ}$.
- 10. Evidence for 4 may appear in part (b).

Question		Generic scheme		Illustrative scheme		Max mark		
9.	(continued)						
Cor	Commonly Observed Responses:							
Candidate A $\sqrt{58} \cos a^{\circ} = -3$ $\sqrt{58} \sin a^{\circ} = 7$ $\bullet^{2} \checkmark \bullet^{3} \checkmark$			Candidate B $k \sin x^{\circ} \cos a^{\circ} + k \cos x^{\circ} \sin a^{\circ}$ •1 \checkmark $\cos a^{\circ} = -3$ $\sin a^{\circ} = 7$			•² <u>√</u> 2		
<i>a</i> =	$a^{\circ} = -\frac{7}{3}$ 113.19 $8 \sin(x+113)$.19)° •⁴ ✔	$\tan a^{\circ} = -\frac{7}{3}$ with at • ² $\sqrt{58} \sin(x+113.19$		$\tan a^{\circ} = -\frac{7}{3}$ a = 113.19 $\sqrt{58} \sin(x + 113.19)^{\circ}$	• ⁴ ×		
	ndidate D - e n $x \cos a + k \cos a$	rrors at \bullet^2 $\cos x \sin a \bullet^1 \checkmark$	Candidate E - use of x at \bullet^2 $k \sin x \cos a + k \cos x \sin a \bullet^1 \checkmark$		Candidate F $k \sin A \cos B + k \cos A \sin B$ • 1 *			
	$\cos a^{\circ} = 7$ $\sin a^{\circ} = -3$	•² x	$k \cos x^{\circ} = -3$ $k \sin x^{\circ} = 7$	•² x	$k\cos A = -3$ $k\sin A = 7$	•² x		

 $\tan a^{\circ} = -\frac{7}{3}$

a = 113.19...

 $\sqrt{58}\sin(x+113.19...)^{\circ}$ $\bullet^{3}\checkmark\bullet^{4}\boxed{1}$

 $\tan a^{\circ} = -\frac{3}{7}$

a = 336.80...

 $\sqrt{58}\sin(x+336.80...)^{\circ} \bullet^3 \checkmark \bullet^4 \checkmark 1$

 $\sqrt{58}\sin(x+113.19...)^{\circ} \bullet^{3} \checkmark \bullet^{4} \checkmark_{1}$

Question			Generic scheme	Illustrative scheme	Max mark
9.	(b)	(i)	• ⁵ state maximum value	• ⁵ 2√58	1
		(ii)	Method 1	Method 1	2
			•6 start to solve	• $x+113.19=90$ leading to $x=-23.19$	
			\bullet^7 state value of x	• 7 $x = 336.80$	
			Method 2	Method 2	
			• start to solve	• 6 $x+113.19=450$	
			• 7 state value of x	• $x = 336.80$	

Notes:

- 11. 7 is only available where an angle outwith the range $0 \le x < 360$ needs to be considered see Candidate G.
- 12. \bullet^7 is only available where \bullet^6 has been awarded. However, see Candidate K.

Commonly Observed Responses:

Commonly Observed Responses.					
Candidate G - not considering angle outwith $0 \le x < 360$ $\sqrt{58} \sin(x-23)^{\circ}$ from part (a) $x-23=90$ x=113	Candidate H - simplification (i) $2\sqrt{58}$ (ii) $\sqrt{58}\sin(x+113)^{\circ} = \sqrt{58}$ $x+113=90$ $x=-23$ $x=337$ •6 \checkmark •7 \checkmark				
Candidate I - follow-through marking (i) $\sqrt{58}$ (ii) $2\sqrt{58}\sin(x+113)^\circ = \sqrt{58}$ $x+113=30$ $x=-83$ $x=277$ • $^6\sqrt{1}$ • $^7\sqrt{1}$	Candidate J - graphical approach (i) $\sqrt{58}$ (ii) max occurs when $x + 113 = 90$ $x = -23$ $x = 337$ • 6 \checkmark • 7 \checkmark				
Candidate K - no acknowledgement of $\times 2$ (i) $\sqrt{58}$ • 5 x (ii) $\sqrt{58} \sin(x+113)^\circ = \sqrt{58}$ x+113=90 x=-23 $x=337$ • 6 x • 7 \checkmark 1					