7.
$$S_{1} \times + 2 = 3 cos 7 \times$$

$$S_{1} \times + 2 = 3 (1 - 2sin^{2} \times)$$

$$S_{1} \times + 2 = 3 - 6 sin^{2} \times$$

$$S_{1} \times + 2 = 3 - 6 sin^{2} \times$$

$$S_{1} \times + 2 = 3 - 6 sin^{2} \times$$

$$(3 \sin^2 x + \sin x - 1 = 0)$$

$$(3 \sin x - 1)(2 \sin x + 1) = 0$$

 $3 \sin x - 1 = 0$ $2 \sin x + 1 = 0$

$$3\sin x - 1 = 0$$

$$2\sin x$$

$$\sin x = 1$$

$$\sin x$$

$$Sinx = \frac{1}{3}$$
 $Sinx$

$$3\sin x - 1 = 0$$

$$2\sin x$$

$$\sin x = \frac{1}{3}$$

$$\sin x$$

$Sinx = \frac{1}{3}$	SUN X = -
oc = 19.5°, 160.5°	x = 210°,

	3		
)(=	19.5; 160.5°	χ=	

$$\frac{\sqrt{60}}{5 \ln^{-1} \left(\frac{1}{2}\right)}$$

1	
Sin-1	(1)=30°
2	A
T	C

Question		on	Generic scheme	Illustrative scheme	Max mark
7.			• use double angle formula to express equation in terms of $\sin x^{\circ}$	$\bullet^1 \ldots = 3\left(1 - 2\sin^2 x^\circ\right)$	5
			•² arrange in standard quadratic form	• 2 $6 \sin^{2} x^{\circ} + \sin x^{\circ} - 1 = 0$	
			• factorise or use quadratic formula	• $(3\sin x^{\circ} - 1)(2\sin x^{\circ} + 1)(=0)$ or $\sin x^{\circ} = \frac{-1 \pm \sqrt{25}}{12}$	
			• ⁴ solve for $\sin x^{\circ}$	•4 $\sin x^{\circ} = \frac{1}{3}$, $\sin x^{\circ} = -\frac{1}{2}$	
			•5 solve for x	• ⁵ 19.47, 160.52, 210, 330	

Notes:

- 1. Substituting $1-2\sin^2 A$ or $1-2\sin^2 \alpha$ for $\cos 2x^\circ$ at the \bullet^1 stage should be treated as bad form provided the equation is written in terms of x at \bullet^2 stage. Otherwise, \bullet^1 is not available.
- 2. Do not penalise the omission of degree signs.
- 3. '=0' must appear by \bullet^3 stage for \bullet^2 to be awarded. However, for candidates using the quadratic formula to solve the equation, '=0' must appear at \bullet^2 stage for \bullet^2 to be awarded.
- 4. Candidates may express the equation obtained at \bullet^2 in the form $6S^2 + S 1 = 0$, $6x^2 + x 1 = 0$ or using any other dummy variable at the \bullet^3 stage. In these cases, award \bullet^3 for (3S-1)(2S+1) or (3x-1)(2x+1).

However, \bullet^4 is only available if $\sin x^\circ$ appears explicitly at this stage - see Candidate A.

- 5. The equation $1 6\sin^2 x^\circ \sin x^\circ = 0$ does not gain \bullet^2 unless \bullet^3 has been awarded.
- 6. 3 is awarded for identifying the factors of the quadratic obtained at 2 eg " $3 \sin x^{\circ} 1 = 0$ and $2 \sin x^{\circ} + 1 = 0$ ".
- 7. \bullet^4 and \bullet^5 are only available as a consequence of trying to solve a quadratic equation see Candidate B.
- 8. •3, •4 and •5 are not available for any attempt to solve a quadratic equation written in the form $ax^2 + bx = c$ see Candidate C.
- 9. \bullet^5 is only available where at least one of the equations at \bullet^4 leads to two solutions for x.
- 10. Do not penalise additional (correct) solutions at \bullet^5 . However see Candidates E and F.
- 11. Accept answers which round to 19, 19.5 and 161.

Qı	uestion	Generic sch	eme	Illustrative scheme	Max mark	
7.	(continu	ied)			_	
Cor	 nmonly O	bserved Responses:				
	ididate A	·	•1 √ •2 √	Candidate B - not solving a quadratic		
•~	$S^2 + S - 1 = (S - 1)(2S + 1)$	•	₃³ ✓	$6\sin^2 x^\circ + \sin x^\circ - 1 = 0$ $7\sin x^\circ - 1 = 0$	•² ✓ •³ x	
`	$\frac{1}{3}$, $S = -$,	•4 ^	$\sin x^{\circ} = \frac{1}{7}$	• ⁴ ✓ 2	
	3	2 5, 210, 330	•5 ✓1	x = 8.2	• ⁵ ✓2	
sin		- not in standard qua $-6\sin^2 x^\circ$ $ax^\circ = 1$	dratic form •¹ ✓ •² ✓₂	Candidate D - reading $\cos 2x^{\circ}$ as $\sin x^{\circ} + 2 = 3\cos^2 x^{\circ}$ $\sin x^{\circ} + 2 = 3(1 - \sin^2 x^{\circ})$	$\cos^2 x^\circ$	
	$x^{\circ} (6 \sin x^{\circ})$ $x^{\circ} = 1$	$6\sin x^\circ + 5 = 1$	•³ <mark>√₂</mark>	$3\sin^{2} x^{\circ} + \sin x^{\circ} - 1 = 0$ $\sin x^{\circ} = \frac{-1 \pm \sqrt{13}}{6}$	• ² 🔽	
90,	221.8, 31	$\Rightarrow \sin x = -\frac{4}{6}$ 8.2	• ⁴ x	$\sin x = \frac{1}{6}$ $\sin x^{\circ} = 0.434, \sin x^{\circ} = -0.767$ 25.7, 154.3, 230.1, 309.9	• ⁴ 1 • ⁵ 1	
	didate E		•¹ ✓ •² ✓	Candidate F :	•¹ ✓ •² ✓	
`		$2\sin x^{\circ} + 1) = 0$ $\sin x^{\circ} = -\frac{1}{2}$	•³ ✓ •⁴ ✓	$(3\sin x^{\circ} - 1)(2\sin x^{\circ} + 1) = 0$ $\sin x^{\circ} = \frac{1}{2}, \sin x^{\circ} = -\frac{1}{2}$	• ³ ✓	
<i>x</i> =	x = 19, x = 1	61 $x = 30$ x = 210, x = 330		3, 2 x = 19, 161, 30, 210, 330	• ⁵ *	
	However, where the final solution(s) are clearly identified by the candidate award •5					