NUMBER

2.
$$y = 2x^5 - 3x$$
 $dy = 10x^4 - 3$
 $M = 10(1)^4 - 3$
 $M = 7$
 $y + 1 = 7(x - 1)$
 $y = 2(1)^5 - 3(1)$
 $y = 7x - 8$

y= 7x-8

(1,-1)

Question		on	Generic scheme	Illustrative scheme	Max mark
2.			•¹ calculate <i>y</i> -coordinate	• ¹ −1	4
			•² differentiate	• 2 $10x^{4} - 3$	
			•³ calculate the gradient	•³ 7	
			• ⁴ find equation of line	• 4 $y = 7x - 8$	

Notes

- 1. Only •¹ is available to candidates who integrate.
- 2. 4 is only available where candidates attempt to find the gradient by substituting into their derivative.
- 3. The appearance of $10x^4 3$ gains •².
- 4. 3 is not available for y = 7. However, where 7 is then used as the gradient of the straight line, 3 may be awarded see Candidates B, C & D.
- 5. 4 is not available as a consequence of using a perpendicular gradient.

5. 5 15 not available as a consequence of asing a perpendicular gradient.									
Commonly Observed Responses:									
Candidate A $ \frac{dy}{dx} = 10x^4 - 3 $ $ y = 7 $ $ m = -3 $ $ y = -3x + 10 $	•² ✓ •¹ x •³ x •⁴ √₂	Candidate B - incorrect no $y = -1$ $y = 10x^{4} - 3$ $y = 7$ $y + 1 = 7(x - 1)$ $y = 7x - 8$	•¹ √ - BoD						
Candidate C - use of values $y = -1 $	s in equation •¹ ✓ - BoD •² ✓ •³ ✓	Candidate D - incorrect no $y = -1$ $\frac{dy}{dx} = 10x^4 - 3$ $y = 7$ Evidence for •³ would in the equation of	•¹ ✓ - BoD •² ✓ •³ × need to appear						
Candidate E y = -1 $\frac{dy}{dx} = 10x^4 - 3 = 0$ $10(1)^4 - 3 = 0$ m = 7 y = 7x - 8	•¹ ✓ •² ✓ •³ × •⁴ ✓1								