15.
$$x + 3y = 17$$

 $3y = -x + 17$
 $y = -\frac{1}{3}x + \frac{17}{3}$

$$\int_{3}^{2} \frac{3}{3} \times \frac{1}{3}$$

$$M_{\text{tangent}} = -\frac{1}{3}$$

$$M_{tangent} = -\frac{1}{3}$$

$$M_{radius} = 3$$

$$y - 5 = 3(x-2)$$

$$y-S=3x-6$$
 $y=3x-1$

Since centre her on y ascis,

centre is y intercept of the equation of the radius

 $C(0,-1)$

Question			Generic scheme	Illustrative scheme	Max mark
15.			•¹ determine gradient of tangent	\bullet^1 $-\frac{1}{3}$	4
			•² determine gradient of radius	•² 3	
			•³ strategy to find centre	• 3 eg $y = 3x - 1$ or $3 = \frac{y - 5}{x - 2}$	
			• ⁴ state coordinates of centre	•4 (0,-1)	

Notes:

- 1. Ignore errors in processing the constant term in \bullet^1 .
- 2. Do not accept $m=-\frac{1}{3}x$ for \bullet^1 . However \bullet^2 , \bullet^3 and \bullet^4 are still available where the candidate uses a numerical value for m_{\perp} .
- 3. Accept y-5=3(x-2) as evidence for \bullet^3 .
- 4. \bullet^4 is only available as a consequence of trying to find and use a perpendicular gradient along with a point on the *y*-axis.
- 5. Where candidates use "stepping out" with the perpendicular gradient, the diagram must be consistent with the solution to gain \bullet^3 and \bullet^4 .
- 6. Accept "x = 0", "y = -1" stated explicitly for \bullet^4 .

Commonly Observed Responses:

Candidate A - perpendicular gradient clearly stated $x + 3y = 17$	Candidate B - no communication for perpendicular gradient $x + 3y = 17$ $y = -\frac{1}{3}x + \frac{17}{3}$
$m_{\perp} = 3$ $y = 3x - 1$ $\bullet^{1} \checkmark \bullet^{2} \checkmark$ $\bullet^{3} \checkmark$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Candidate C - no communication for perpendicular gradient or rearrangement $x+3y=17$ $m=3$ $y=3x-1$ • 1	Candidate D - using geometry : • • • • • • • • • • • • • • • • • •
Candidate E - incorrect gradient $x+3y=17$ $3y=-x+17$ $m_{\perp}=1$ $\bullet^1 \wedge \bullet^2 \times 1 = \frac{5-y}{2-0}$ $\bullet^3 \checkmark_1$ Centre is at $(0,3)$ $\bullet^4 \checkmark_1$	

[END OF MARKING INSTRUCTIONS]