14.(a)
$$A = 6x^2 + 2xh + 3xh + 2xh + 3xh$$

$$A = 6x^2 + 10xh$$

14.(a)
(ii)
$$7200 = 6x^2 + 10xh$$

$$h = \frac{7200 - 6x^2}{10x}$$

$$V = (3x)(2x)(720$$

$$V = (3x)(2x)(7200)$$

$$V = (3x)(2x)\left(\frac{7200 - 6x^2}{10x}\right)$$

$$V = 6x^2\left(\frac{7200 - 6x^2}{10x}\right)$$

$$V = (3x)(2x)(7\frac{200-6x^2}{10x})$$

$$V = 4320 \times -\frac{18}{5} \times^3$$
 as regid.

14.(b)

$$V(x) = 4320x - 18x^3$$

$$V'(x) = 4320 - \frac{54}{5}x^{3}$$

$$4320 - \frac{54}{5} x^2 = 0$$

$$\frac{54}{5}x^2 = 4320$$

$$\chi^2 = 400$$

$$x = \pm 20 \rightarrow x = 20$$

$$\frac{10}{\text{V'(x)}} = \frac{30}{30}$$
Shape

Max when x = 20

Question			Generic scheme	Illustrative scheme	Max mark
14.	(a)	(i)	\bullet^1 express A in terms of x and h	$\bullet^1 (A =) 6x^2 + 10xh$	1
		(ii)	• 2 express h in terms of x	$\bullet^2 h = \frac{7200 - 6x^2}{10x}$	2
			$ullet^3$ substitute for h and demonstrate result	• $V = 3x \times 2x \times \left(\frac{7200 - 6x^2}{10x}\right)$ leading to $V = 4320x - \frac{18}{5}x^3$	

Notes:

- 1. Accept unsimplified expressions for ●¹.
- 2. \bullet^2 is only available where the (simplified) expression for A contains at least 2 terms.
- 3. The substitution for h at \bullet^3 must be clearly shown for \bullet^3 to be awarded.

Commonly Observed Responses:

(b)	• ⁴ differentiate	$\bullet^4 4320 - \frac{54}{5}x^2$	
	•5 equate expression for derivative to 0	$\bullet^5 4320 - \frac{54}{5}x^2 = 0$	
	\bullet^6 solve for x	• ⁶ 20	
	• ⁷ verify nature	• table of signs for a derivative	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		shape / -	
		∴ maximum (when $x = 20$)	

Notes

- 4. For any approach which does not use differentiation award 0/4.
- 5. 5 can be awarded for $\frac{54}{5}x^2 = 4320$.
- 6. For candidates who integrate any term at the \bullet^4 stage, only \bullet^5 is available on follow through for setting their 'derivative' to 0.
- 7. Ignore the appearance of -20 at mark \bullet^6 .
- 8. Where -20 is considered in a nature table (or second derivative), "x = 20" must be clearly identified as leading to the maximum area.
- 9. 6 and 7 are not available to candidates who state that the maximum exists at a negative value of r
- 10. Do not penalise statements such as "max volume is 20" or "max is 20" at •7.

14. (continued)

Commonly Observed Responses:

Candidate A - second derivative

$$V''(x) = -\frac{108}{5}x$$

$$V''(20) < 0$$
 : maximum

Candidate B - beware of multiplying before equating

$$V'(x) = 4320 - \frac{54}{5}x^2$$

✓

$$V'(x) = 21600 - 54x^2$$

$$21600 - 54x^2 = 0$$

x = 20

•⁵ •

Candidate C

Stationary points when V'(x) = 0

$$V'(x) = 4320 - \frac{54}{5}x^2$$

For the table of signs for a derivative, accept:

x	20 ⁻	20	20 ⁺	x	\rightarrow	20	\rightarrow	x	а	20	b
V'(x)	+	0	_	V'(x)	+	0	-	V'(x)	+	0	_
Slope	/			Slope	/		\	Slope	/		
or				or				or			
shape	/			shape				shape			

Arrows are taken to mean 'in the neighbourhood of'

Where a < 20 and b > 20

20

For the table of signs for a derivative, accept:

x	\rightarrow	-20	\rightarrow	20	\rightarrow
V'(x)	_	0	+	0	_
Slope or shape					

V'(x) - 0 + 0

Slope or shape

Since the function is continuous $-20 \rightarrow 20$ is acceptable

Since the function is continuous -20 < b < 20 is acceptable

- For this question do not penalise the omission of 'x' or the word 'shape'/'slope'.
- Stating values of V'(x) is an acceptable alternative to writing '+' or '-' signs.
- Acceptable variations of V'(x) are: $V', \frac{dV}{dx}$, and $4320 \frac{54}{5}x^2$. Accept $\frac{dy}{dx}$ only where candidates have previously used $y = 4320x \frac{18}{5}x^3$ in their working.