12. $$\frac{dy}{dx} = 8x^{3} + 3$$ $$y = 2x^{4} + 3x + c$$ $$3 = 2(-1)^{4} + 3(-1) + c$$ WRITE IN THIS $$3 = 2 - 3 + C$$ $$c = 4$$ NUMBER $y = 2x^4 + 3x + 4$. | Question | | n | Generic scheme | Illustrative scheme | Max
mark | |----------|--|---|--------------------------------------|--|-------------| | 12. | | | •¹ integrate one term | $\bullet^1 \text{ eg } \frac{8x^4}{4}$ | 4 | | | | | •² complete integration | • 2 eg + $3x + c$ | | | | | | • 3 substitute for x and y | | | | | | | \bullet^4 state expression for y | $\bullet^4 y = 2x^4 + 3x + 4$ | | ## Notes: - 1. For candidates who omit +c only \bullet^1 is available. - For candidates who differentiate either term, •², •³, and •⁴ are not available. Do not penalise the appearance of an integral sign and/or dx at •² and •³. ## **Commonly Observed Responses:** | Candidate A - incomplet $y = 2x^4 + 3x + c$ | e substitution
•¹ ✓ •² ✓ | Candidate B - partial integration $y = 2x^4 + 3 + c$ • • • • • • • • • • • • • • • • • • • | | |---|---|--|---------------------------| | $y = 2(-1)^4 + 3(-1) + c$ | | $3 = 2(-1)^4 + 3 + c$ | ● ³ ✓ 1 | | $c = 4$ $y = 2x^4 + 3x + 4$ | • ³ ^• • ⁴ ✓ ₁ | $c = -2$ $y = 2x^4 + 1$ | • ⁴ 🔽 | | Candidate C - integrating $y = 2x^4 + 3x$ $y = 2x^4 + 3x + c$ | g over two lines
•¹ ✓ •² × | | | | $3 = 2(-1)^4 + 3(-1) + c$ | •³ ✓ | | | | $y = 2x^4 + 3x + 4$ | • ⁴ ✓ | | |