11.(a)
$$C_{1}(4,-2)$$

$$C_{2}(-1,3)$$

$$G_{3}(-1,3)$$

$$G_{4}(-1,3)$$

$$G_{5}(4,-2)$$

$$G_{7}(4,-2)$$

$$G_{7}(4$$

NUMBER

d = 7.1 since d < ri+rz, the aides whereat at two distinct points.

Question			Generic scheme	Illustrative scheme	Max mark
11.	(a)		•¹ state centre of C₁	•1 (4, -2)	3
			•² state centre of C ₂	•2 (-1, 3)	
			•³ calculate distance between centres	• $\sqrt{50}$ or $5\sqrt{2}$ or 7.07	

Notes:

- 1. Accept x = 4, y = -2 for \bullet^1 and x = -1, y = 3 \bullet^2 . Do not accept g = 1, f = -3 for \bullet^2 .
- 2. Do not penalise lack of brackets in \bullet^1 and \bullet^2 .

Commonly Observed Responses:

	(b)		• ⁴ state radius of C ₁	•4 $r_1 = \sqrt{37}$ or 6.08	3				
			• ⁵ calculate radius of C ₂	•5 $r_2 = \sqrt{17}$ or 4.12					
			• demonstrate and communicate result	• 10.20 > 7.07 (>1.95) ∴ circles intersect at two distinct points					

Notes:

- 3. Accept $\sqrt{1^2 + 3^2 + 7} = \sqrt{17}$ or $\sqrt{1^2 + -3^2 + 7} = \sqrt{17}$ for \bullet^5 . However, do not accept $\sqrt{\left(-1\right)^2 + 3^2 + 7} = \sqrt{17}$.
- 4. At •6 comparison must be made using decimals. Do not accept $\sqrt{37} + \sqrt{17} > \sqrt{50}$ without any further working.
- 5. Evidence for \bullet^4 and \bullet^5 may be found in part (a).
- 6. For candidates who use simultaneous equations, award \bullet^4 for substitution of y = x + 1 into the equation of one of the circles, \bullet^5 for rearranging in standard quadratic form and \bullet^6 for obtaining distinct x-coordinates.
- 7. Do not penalise the omission of "at two distinct points" at \bullet 6.

Commonly Observed Responses: