1.(a)

1.(b)

$$Mae = \frac{3-8}{13+2}$$

$$= -\frac{5}{15}$$

$$= -\frac{1}{3}$$

$$M_{alt} = 3$$

 $M_{PR} = 3 + 1$

 $tan 0 = \frac{1}{2}$

$$y+1 = 3x-15$$

$$y = 3x-16$$

$$y + 1 = 3(x - 5)$$

DO NOT WRITE IN THIS MARGIN

Question			Generic scheme	Illustrative scheme	Max mark
1.	(a)		•¹ find gradient of QR	• $1 - \frac{1}{3}$ or $-\frac{5}{15}$	3
			•² use property of perpendicular lines	•² 3	
			•³ determine equation of altitude	• $y = 3x - 16$	

Notes:

- 1. 3 is only available to candidates who find and use a perpendicular gradient.
- 2. The gradient of the perpendicular bisector must appear in fully simplified form at \bullet^2 or \bullet^3 stage for \bullet^3 to be awarded see Candidate B.
- 3. 3 is not available as a consequence of using the midpoint of QR and the point P.
- 4. At •³, accept any arrangement of a candidate's equation where constant terms have been simplified.

Commonly Observed Responses:

		BEWARE	Candidate B - unsimplified gradient		
		on from incorrect substitution	$m = -\frac{5}{15}$		
$m = \frac{13}{3}$ $y = 3x - \frac{1}{3}$	()	•¹ x •² ∧ •³ x	$m_{\perp} = \frac{15}{5}$ $15x - 5y - 80 = 0$ •3 ^		
(b)		• ⁴ determine gradient of the line	$\bullet^4 m = \frac{1}{2} \text{ or } \tan \theta = \frac{1}{2}$	2	
		• use $m = \tan \theta$ to find the angle	•5 26·6° or 0.4636 radians		

Notes:

- 5. Do not penalise the omission of units at \bullet^5 .
- 6. Accept any answers which round to 27° or 0.46 radians.
- 7. For 27° or 0.46 radians without working award 2/2.
- 8. Where candidates find the angle of the altitude or other sides with the positive direction of the x-axis only \bullet ⁵ is available.

Commonly Observed Responses:

Candidate C - no refe	erence to tan	Candidate D - BEV	Candidate D - BEWARE	
$m=\frac{4}{8}$	• ⁴ ✓	$m=\frac{1}{2}$	•⁴ ✓	
26.6°	•5 ✓	$\theta = \tan \frac{1}{2}$ $\theta = 26.6^{\circ}$	• ⁵ ≭	
		Stating tan rathe See general marki		
Candidate E $\tan^{-1}(3) = 72^{\circ}$	• ⁴ x • ⁵ <mark>√</mark> 1			